
Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Chapter 3: Processes

3.2 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Chapter 3: Processes

 Process Concept
 Process Scheduling
 Operations on Processes
 Interprocess Communication
 Examples of IPC Systems
 Communication in Client-Server Systems

3.4 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Process Concept

 An operating system executes a variety of programs:
 Batch system – jobs
 Time-shared systems – user programs or tasks

 Textbook uses the terms job and process almost interchangeably
 Process – a program in execution; process execution must

progress in sequential fashion
 Multiple parts

 The program code, also called text section
 Current activity including program counter, processor

registers
 Stack containing temporary data

 Function parameters, return addresses, local variables
 Data section containing global variables
 Heap containing memory dynamically allocated during run time

3.5 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Process Concept (Cont.)

 Program is passive entity stored on disk (executable file),
process is active
 Program becomes process when executable file loaded into

memory
 Execution of program started via GUI mouse clicks, command

line entry of its name, etc
 One program can be several processes

 Consider multiple users executing the same program

3.6 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Process in Memory

3.7 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Process State

 As a process executes, it changes state
 new: The process is being created
 running: Instructions are being executed
 waiting: The process is waiting for some event to occur
 ready: The process is waiting to be assigned to a processor
 terminated: The process has finished execution

3.8 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Diagram of Process State

3.9 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Process Control Block (PCB)

Information associated with each process
(also called task control block)
 Process state – running, waiting, etc
 Program counter – location of

instruction to next execute
 CPU registers – contents of all process-

centric registers
 CPU scheduling information- priorities,

scheduling queue pointers
 Memory-management information –

memory allocated to the process
 Accounting information – CPU used,

clock time elapsed since start, time
limits

 I/O status information – I/O devices
allocated to process, list of open files

3.10 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

CPU Switch From Process to Process

3.11 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Threads

 So far, process has a single thread of execution
 Consider having multiple program counters per process

 Multiple locations can execute at once
 Multiple threads of control -> threads

 Must then have storage for thread details, multiple program
counters in PCB

 See next chapter

3.12 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Process Representation in Linux

Represented by the C structure task_struct

pid t_pid; /* process identifier */
long state; /* state of the process */
unsigned int time_slice /* scheduling information */
struct task_struct *parent; /* this process’s parent */
struct list_head children; /* this process’s children */
struct files_struct *files; /* list of open files */
struct mm_struct *mm; /* address space of this process */

3.13 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Process Scheduling

 Maximize CPU use, quickly switch processes onto CPU for
time sharing

 Process scheduler selects among available processes for
next execution on CPU

 Maintains scheduling queues of processes
 Job queue – set of all processes in the system
 Ready queue – set of all processes residing in main

memory, ready and waiting to execute
 Device queues – set of processes waiting for an I/O device
 Processes migrate among the various queues

3.14 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Ready Queue And Various I/O Device Queues

3.15 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Representation of Process Scheduling

 Queueing diagram represents queues, resources, flows

3.16 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Schedulers

 Short-term scheduler (or CPU scheduler) – selects which process should
be executed next and allocates CPU
 Sometimes the only scheduler in a system
 Short-term scheduler is invoked frequently (milliseconds) (must be

fast)
 Long-term scheduler (or job scheduler) – selects which processes should

be brought into the ready queue
 Long-term scheduler is invoked infrequently (seconds, minutes)

(may be slow)
 The long-term scheduler controls the degree of multiprogramming

 Processes can be described as either:
 I/O-bound process – spends more time doing I/O than computations,

many short CPU bursts
 CPU-bound process – spends more time doing computations; few very

long CPU bursts
 Long-term scheduler strives for good process mix

3.17 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Addition of Medium Term Scheduling

 Medium-term scheduler can be added if degree of multiple
programming needs to decrease
 Remove process from memory, store on disk, bring back in

from disk to continue execution: swapping

3.18 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Multitasking in Mobile Systems

 Some mobile systems (e.g., early version of iOS) allow only one
process to run, others suspended

 Due to screen real estate, user interface limits iOS provides for a
 Single foreground process- controlled via user interface
 Multiple background processes– in memory, running, but not

on the display, and with limits
 Limits include single, short task, receiving notification of events,

specific long-running tasks like audio playback
 Android runs foreground and background, with fewer limits

 Background process uses a service to perform tasks
 Service can keep running even if background process is

suspended
 Service has no user interface, small memory use

3.19 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Context Switch

 When CPU switches to another process, the system must save
the state of the old process and load the saved state for the
new process via a context switch

 Context of a process represented in the PCB
 Context-switch time is overhead; the system does no useful

work while switching
 The more complex the OS and the PCB the longer the

context switch
 Time dependent on hardware support

 Some hardware provides multiple sets of registers per CPU
 multiple contexts loaded at once

3.20 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Operations on Processes

 System must provide mechanisms for:
 process creation,
 process termination,
 and so on as detailed next

3.21 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Process Creation

 Parent process create children processes, which, in turn
create other processes, forming a tree of processes

 Generally, process identified and managed via a process
identifier (pid)

 Resource sharing options
 Parent and children share all resources
 Children share subset of parent’s resources
 Parent and child share no resources

 Execution options
 Parent and children execute concurrently
 Parent waits until children terminate

3.22 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

A Tree of Processes in Linux

init
pid = 1

sshd
pid = 3028

login
pid = 8415

kthreadd
pid = 2

sshd
pid = 3610

pdflush
pid = 200

khelper
pid = 6

tcsch
pid = 4005

emacs
pid = 9204

bash
pid = 8416

ps
pid = 9298

After system booted

Performing tasks on
behalf of the kernel

Managing clients that
connect to the
system by using
ssh

Managing clients that directly
log onto the system.

3.23 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Process Creation (Cont.)

 Address space
 Child duplicate of parent (has the same program as the

parent)
 Child has a program loaded into it

 UNIX examples
 fork() system call creates new process. The new process

consists of a copy of the address space of the original
process.

 exec() system call used after a fork() to replace the
process’ memory space with a new program

move itself off the ready queue until the termination of the child

3.24 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Representation of Process Scheduling

 Queueing diagram represents queues, resources, flows

3.25 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

C Program Forking Separate Process

The only difference is
that the value of pid for
the child process is
zero, while that for the
parent is the actual pid
of the child process.

3.26 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Process Termination

 Process executes last statement and then asks the operating
system to delete it using the exit() system call.
 Returns status data from child to parent (via wait())

 Process’ resources are deallocated by operating system
 Parent may terminate the execution of children processes using

the abort() system call. Some reasons for doing so:

 Child has exceeded allocated resources
 Task assigned to child is no longer required
 The parent is exiting and the operating systems does not

allow a child to continue if its parent terminates

3.27 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Process Termination

 Some operating systems do not allow child to exist if its parent has
terminated. If a process terminates, then all its children must also
be terminated.
 cascading termination. All children, grandchildren, etc. are

terminated.
 The termination is initiated by the operating system.

 The parent process may wait for termination of a child process by
using the wait()system call. The call returns status information
and the pid of the terminated process

pid = wait(&status);

 If no parent waiting (did not invoke wait()) process is a zombie
 Once the parent calls wait(), the process identifier of the

zombie process and its entry in the process table are released.
 If parent terminated without invoking wait , process is an orphan

 Assigning the init process as the new parent, periodically
invokes wait()

3.28 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Interprocess Communication

 Processes within a system may be independent or cooperating
 Cooperating process can affect or be affected by other processes,

including sharing data
 Reasons for cooperating processes:

 Information sharing (shared files)
 Computation speedup (parallel subtasks)
 Modularity (system function divided into separate processes)
 Convenience

 Cooperating processes need interprocess communication (IPC)
 Two models of IPC

 Shared memory
 Message passing

3.29 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Communications Models

(a) Message passing. (b) shared memory.

3.30 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Interprocess Communication – Shared Memory

 An area of memory shared among the processes that wish to
communicate
 Typically, a shared-memory region resides in the address space of the

process creating the shared-memory segment. Other processes that wish to
communicate using this shared-memory segment must attach it to their
address space.

 The communication is under the control of the users processes not the
operating system.

 Major issues is to provide mechanism that will allow the user processes
to synchronize their actions when they access shared memory.

 Synchronization is discussed in great details in Chapter 5.

3.31 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Producer-Consumer Problem

 Paradigm for cooperating processes, producer process produces
information that is consumed by a consumer process
 unbounded-buffer places no practical limit on the size of the buffer

 The consumer may have to wait for new items, but the producer
can always produce new items.

 bounded-buffer assumes that there is a fixed buffer size
 The consumer must wait if the buffer is empty, and the producer

must wait if the buffer is full.

3.32 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Bounded-Buffer – Shared-Memory Solution

 Shared data
#define BUFFER_SIZE 10

typedef struct {

. . .

} item;

item buffer[BUFFER_SIZE];

int in = 0;

int out = 0;

3.33 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Bounded-Buffer – Producer

item next_produced;
while (true) {

/* produce an item in next produced */
while (((in + 1) % BUFFER_SIZE) == out)

; /* do nothing */
buffer[in] = next_produced;
in = (in + 1) % BUFFER_SIZE;

}

3.34 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Bounded Buffer – Consumer

item next_consumed;

while (true) {
while (in == out)

; /* do nothing */
next_consumed = buffer[out];

out = (out + 1) % BUFFER_SIZE;

/* consume the item in next consumed */

}

Solution is correct, but can only use BUFFER_SIZE-1
elements. How to design a solution in which BUFFER
SIZE items can be in the buffer at the same time?

3.35 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Interprocess Communication – Message Passing

 Mechanism for processes to communicate and to synchronize
their actions

 Message system – processes communicate with each other
without resorting to shared variables

 IPC facility provides two operations:
 send(message)
 receive(message)

 Particularly useful in a distributed environment
 The message size is either fixed or variable

3.36 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Message Passing (Cont.)

 If processes P and Q wish to communicate, they need to:
 Establish a communication link between them
 Exchange messages via send/receive

 Implementation issues:
 How are links established?
 Can a link be associated with more than two processes?
 How many links can there be between every pair of

communicating processes?
 What is the capacity of a link?
 Is the size of a message that the link can accommodate fixed or

variable?
 Is a link unidirectional or bi-directional?

3.37 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Message Passing (Cont.)

 Implementation of communication link
 Physical:

 Shared memory
 Hardware bus
 Network

 Logical:
 Direct or indirect
 Synchronous or asynchronous
 Automatic or explicit buffering

3.38 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Direct Communication

 Processes must name each other explicitly:
 send (P, message) – send a message to process P
 receive(Q, message) – receive a message from process Q

 Properties of communication link
 Links are established automatically
 A link is associated with exactly one pair of communicating

processes
 Between each pair there exists exactly one link
 The link may be unidirectional, but is usually bi-directional

3.39 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Indirect Communication

 Messages are directed and received from mailboxes (also referred
to as ports)
 Each mailbox has a unique id
 Processes can communicate only if they share a mailbox

 Properties of communication link
 Link established only if processes share a common mailbox
 A link may be associated with many processes
 Each pair of processes may share several communication links
 Link may be unidirectional or bi-directional

3.40 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Indirect Communication

 Operations
 create a new mailbox (port)
 send and receive messages through mailbox
 destroy a mailbox

 Primitives are defined as:
send(A, message) – send a message to mailbox A
receive(A, message) – receive a message from mailbox A

3.41 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Indirect Communication

 Mailbox sharing
 P1, P2, and P3 share mailbox A
 P1, sends; P2 and P3 receive
 Who gets the message?

 Solutions
 Allow a link to be associated with at most two processes
 Allow only one process at a time to execute a receive

operation
 Allow the system to select arbitrarily the receiver.

Sender is notified who the receiver was.

3.42 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Synchronization

 Message passing may be either blocking or non-blocking
 Blocking is considered synchronous

 Blocking send -- the sender is blocked until the message is
received

 Blocking receive -- the receiver is blocked until a message
is available

 Non-blocking is considered asynchronous
 Non-blocking send -- the sender sends the message and

continue
 Non-blocking receive -- the receiver receives:

 A valid message, or
 Null message

 Different combinations possible

3.43 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Synchronization (Cont.)

 Producer-consumer becomes trivial

message next_produced;

while (true) {
/* produce an item in next produced */

send(next_produced);

}

message next_consumed;
while (true) {

receive(next_consumed);

/* consume the item in next consumed */
}

3.44 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Buffering

 Queue of messages attached to the link.
 implemented in one of three ways

1. Zero capacity – no messages are queued on a link.
Sender must wait for receiver (rendezvous)

2. Bounded capacity – finite length of n messages
Sender must wait if link full

3. Unbounded capacity – infinite length
Sender never waits

3.45 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Communications in Client-Server Systems

 Sockets
 Remote Procedure Calls
 Pipes
 Remote Method Invocation (Java)

3.46 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Sockets

 A socket is defined as an endpoint for communication

 Concatenation of IP address and port – a number included at
start of message packet to differentiate network services on a
host

 The socket 161.25.19.8:1625 refers to port 1625 on host
161.25.19.8

 Communication consists between a pair of sockets

 All ports below 1024 are well known, used for standard
services

 Special IP address 127.0.0.1 (loopback) to refer to system on
which process is running

3.47 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Socket Communication

3.48 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Socket programming

Two socket types for two transport services:
 UDP: unreliable datagram
 TCP: reliable, byte stream-oriented

Application Example:
1. Client reads a line of characters (data) from its keyboard and sends

the data to the server.
2. The server receives the data and converts characters to uppercase.
3. The server sends the modified data to the client.
4. The client receives the modified data and displays the line on its

screen.

3.49 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Socket programming with UDP

UDP: no “connection” between client & server
 no handshaking before sending data
 sender explicitly attaches IP destination address and port # to

each packet
 rcvr extracts sender IP address and port# from received packet

UDP: transmitted data may be lost or received out-of-order

Application viewpoint:
 UDP provides unreliable transfer of groups of bytes

(“datagrams”) between client and server

3.50 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Client/server socket interaction: UDP

close
clientSocket

read datagram from
clientSocket

create socket:
clientSocket =
socket(AF_INET,SOCK_DGRAM)

Create datagram with server IP and
port=x; send datagram via
clientSocket

create socket, port= x:
serverSocket =
socket(AF_INET,SOCK_DGRAM)

read datagram from
serverSocket

write reply to
serverSocket
specifying
client address,
port number

server (running on serverIP) client

3.51 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Example app: UDP client

from socket import *
serverName = ‘hostname’
serverPort = 12000
clientSocket = socket(socket.AF_INET,

socket.SOCK_DGRAM)
message = raw_input(’Input lowercase sentence:’)
clientSocket.sendto(message,(serverName, serverPort))

modifiedMessage, serverAddress =
clientSocket.recvfrom(2048)

print modifiedMessage
clientSocket.close()

Python UDPClient
include Python’s socket
library

create UDP socket for
server

get user keyboard
input

Attach server name, port to
message; send into socket

print out received string
and close socket

read reply characters from
socket into string

3.52 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Example app: UDP server

from socket import *
serverPort = 12000
serverSocket = socket(AF_INET, SOCK_DGRAM)
serverSocket.bind(('', serverPort))
print “The server is ready to receive”
while 1:

message, clientAddress = serverSocket.recvfrom(2048)
modifiedMessage = message.upper()
serverSocket.sendto(modifiedMessage, clientAddress)

Python UDPServer

create UDP socket

bind socket to local port
number 12000

loop forever

Read from UDP socket into
message, getting client’s
address (client IP and port)

send upper case string
back to this client

3.53 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Socket programming with TCP

client must contact server
 server process must first be

running
 server must have created

socket (door) that welcomes
client’s contact

client contacts server by:
 Creating TCP socket, specifying

IP address, port number of
server process

 when client creates socket:
client TCP establishes
connection to server TCP

 when contacted by client, server
TCP creates new socket for
server process to communicate
with that particular client
 allows server to talk with

multiple clients
 source port numbers used to

distinguish clients (more in
Chap 3)

TCP provides reliable, in-order
byte-stream transfer (“pipe”)
between client and server

application viewpoint:

3.54 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Client/server socket interaction: TCP

wait for incoming
connection request
connectionSocket =
serverSocket.accept()

create socket,
port=x, for incoming
request:
serverSocket = socket()

create socket,
connect to hostid, port=x
clientSocket = socket()

server (running on hostid) client

send request using
clientSocketread request from

connectionSocket

write reply to
connectionSocket

TCP
connection setup

close
connectionSocket

read reply from
clientSocket

close
clientSocket

3.55 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Example app: TCP client

from socket import *
serverName = ’servername’
serverPort = 12000
clientSocket = socket(AF_INET, SOCK_STREAM)
clientSocket.connect((serverName,serverPort))
sentence = raw_input(‘Input lowercase sentence:’)
clientSocket.send(sentence)
modifiedSentence = clientSocket.recv(1024)
print ‘From Server:’, modifiedSentence
clientSocket.close()

Python TCPClient

create TCP socket for
server, remote port 12000

No need to attach server
name, port

3.56 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Example app: TCP server

from socket import *
serverPort = 12000
serverSocket = socket(AF_INET,SOCK_STREAM)
serverSocket.bind((‘’,serverPort))
serverSocket.listen(1)
print ‘The server is ready to receive’
while 1:

connectionSocket, addr = serverSocket.accept()

sentence = connectionSocket.recv(1024)
capitalizedSentence = sentence.upper()
connectionSocket.send(capitalizedSentence)
connectionSocket.close()

Python TCPServer

create TCP welcoming
socket

server begins listening for
incoming TCP requests

loop forever

server waits on accept()
for incoming requests, new
socket created on return

read bytes from socket (but
not address as in UDP)

close connection to this
client (but not welcoming
socket)

Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Chapter 4: Threads

4.2 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Chapter 4: Threads

 Overview

 Multicore Programming

 Multithreading Models

 Thread Libraries

 Implicit Threading

 Threading Issues

 Operating System Examples

4.4 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Motivation

 Most modern applications are multithreaded

 Threads run within application

 Multiple tasks with the application can be implemented by

separate threads

 Update display

 Fetch data

 Spell checking

 Answer a network request

 Process creation is heavy-weight while thread creation is

light-weight

 Can simplify code, increase efficiency

 Kernels are generally multithreaded

4.5 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Multithreaded Server Architecture

4.6 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Benefits

 Responsiveness – may allow continued execution if part of

process is blocked, especially important for user interfaces

 Resource Sharing – threads share resources of process, easier

than shared memory or message passing

 Economy – cheaper than process creation, thread switching

lower overhead than context switching

 Scalability – process can take advantage of multiprocessor

architectures

4.7 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Multicore Programming

 Multicore or multiprocessor systems putting pressure on

programmers, challenges include:

 Dividing activities

 Balance

 Data splitting

 Data dependency

 Testing and debugging

 Parallelism implies a system can perform more than one task

simultaneously

 Concurrency supports more than one task making progress

 Single processor / core, scheduler providing concurrency

4.8 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Multicore Programming (Cont.)

 Types of parallelism

 Data parallelism – distributes subsets of the same data

across multiple cores, same operation on each

 Task parallelism – distributing threads across cores, each

thread performing unique operation

 As # of threads grows, so does architectural support for threading

 CPUs have cores as well as hardware threads

 Consider Oracle SPARC T4 with 8 cores, and 8 hardware

threads per core

4.9 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Concurrency vs. Parallelism

 Concurrent execution on single-core system:

 Parallelism on a multi-core system:

4.10 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Single and Multithreaded Processes

4.11 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Amdahl’s Law

 Identifies performance gains from adding additional cores to an

application that has both serial and parallel components

 S is serial portion

 N processing cores

 That is, if application is 75% parallel / 25% serial, moving from 1 to 2

cores results in speedup of 1.6 times

 As N approaches infinity, speedup approaches 1 / S

Serial portion of an application has disproportionate effect on

performance gained by adding additional cores

 But does the law take into account contemporary multicore systems?

4.12 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

User Threads and Kernel Threads

 User threads - management done by user-level threads library

 Three primary thread libraries:

 POSIX Pthreads

 Windows threads

 Java threads

 Kernel threads - Supported by the Kernel

 Examples – virtually all general purpose operating systems, including:

 Windows

 Solaris

 Linux

 Tru64 UNIX

 Mac OS X

4.13 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Multithreading Models

 Many-to-One

 One-to-One

 Many-to-Many

4.14 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Many-to-One

 Many user-level threads mapped to

single kernel thread

 One thread blocking causes all to block

 Multiple threads may not run in parallel

on muticore system because only one

may be in kernel at a time

 Few systems currently use this model

 Examples:

 Solaris Green Threads

 GNU Portable Threads

4.15 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

One-to-One

 Each user-level thread maps to kernel thread

 Creating a user-level thread creates a kernel thread

 More concurrency than many-to-one

 Number of threads per process sometimes

restricted due to overhead

 Examples

 Windows

 Linux

 Solaris 9 and later

4.16 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Many-to-Many Model

 Allows many user level threads to be

mapped to many kernel threads

 Allows the operating system to create

a sufficient number of kernel threads

 Solaris prior to version 9

 Windows with the ThreadFiber

package

4.17 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Two-level Model

 Similar to M:M, except that it allows a user thread to be

bound to kernel thread

 Examples

 IRIX

 HP-UX

 Tru64 UNIX

 Solaris 8 and earlier

4.18 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Thread Libraries

 Thread library provides programmer with API for creating

and managing threads

 Two primary ways of implementing

 Library entirely in user space

 Kernel-level library supported by the OS

4.19 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Pthreads

 May be provided either as user-level or kernel-level

 A POSIX standard (IEEE 1003.1c) API for thread creation and

synchronization

 Specification, not implementation

 API specifies behavior of the thread library, implementation is

up to development of the library

 Common in UNIX operating systems (Solaris, Linux, Mac OS X)

4.20 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Pthreads Example

4.21 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Pthreads Example (Cont.)

4.20 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Pthreads Example (Cont.)

4.22 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Pthreads Code for Joining 10 Threads

4.21 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Pthreads Code for Joining 10 Threads

4.23 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Windows Multithreaded C Program

4.24 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Windows Multithreaded C Program (Cont.)

4.25 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Java Threads

 Java threads are managed by the JVM

 Typically implemented using the threads model provided by

underlying OS

 Java threads may be created by:

 Extending Thread class

 Implementing the Runnable interface

4.26 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Java Multithreaded Program

4.27 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Java Multithreaded Program (Cont.)

4.28 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Implicit Threading

 Growing in popularity as numbers of threads increase,

program correctness more difficult with explicit threads

 Creation and management of threads done by compilers and

run-time libraries rather than programmers

 Three methods explored

 Thread Pools

 OpenMP

 Grand Central Dispatch

 Other methods include Microsoft Threading Building Blocks
(TBB), java.util.concurrent package

4.29 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Thread Pools

 Create a number of threads in a pool where they await work

 Advantages:

 Usually slightly faster to service a request with an existing

thread than create a new thread

 Allows the number of threads in the application(s) to be

bound to the size of the pool

 Separating task to be performed from mechanics of

creating task allows different strategies for running task

 i.e.Tasks could be scheduled to run periodically

 Windows API supports thread pools:

4.30 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

OpenMP

 Set of compiler directives and an

API for C, C++, FORTRAN

 Provides support for parallel

programming in shared-memory

environments

 Identifies parallel regions –

blocks of code that can run in

parallel

#pragma omp parallel

Create as many threads as there are

cores

#pragma omp parallel for

for(i=0;i<N;i++) {

 c[i] = a[i] + b[i];

}

Run for loop in parallel

4.31 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Grand Central Dispatch

 Apple technology for Mac OS X and iOS operating systems

 Extensions to C, C++ languages, API, and run-time library

 Allows identification of parallel sections

 Manages most of the details of threading

 Block is in “^{ }” - ˆ{ printf("I am a block"); }

 Blocks placed in dispatch queue

 Assigned to available thread in thread pool when removed

from queue

4.32 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Grand Central Dispatch

 Two types of dispatch queues:

 serial – blocks removed in FIFO order, queue is per process,

called main queue

 Programmers can create additional serial queues within

program

 concurrent – removed in FIFO order but several may be

removed at a time

 Three system wide queues with priorities low, default, high

4.33 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Threading Issues

 Semantics of fork() and exec() system calls

 Signal handling

 Synchronous and asynchronous

 Thread cancellation of target thread

 Asynchronous or deferred

 Thread-local storage

 Scheduler Activations

4.34 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Semantics of fork() and exec()

 Does fork()duplicate only the calling thread or all

threads?

 Some UNIXes have two versions of fork

 exec() usually works as normal – replace the running

process including all threads

4.35 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Signal Handling

 Signals are used in UNIX systems to notify a process that a

particular event has occurred.

 A signal handler is used to process signals

1. Signal is generated by particular event

2. Signal is delivered to a process

3. Signal is handled by one of two signal handlers:

1. default

2. user-defined

 Every signal has default handler that kernel runs when

handling signal

 User-defined signal handler can override default

 For single-threaded, signal delivered to process

4.36 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Signal Handling (Cont.)

 Where should a signal be delivered for multi-threaded?

 Deliver the signal to the thread to which the signal

applies

 Deliver the signal to every thread in the process

 Deliver the signal to certain threads in the process

 Assign a specific thread to receive all signals for the

process

4.37 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Thread Cancellation

 Terminating a thread before it has finished

 Thread to be canceled is target thread

 Two general approaches:

 Asynchronous cancellation terminates the target thread

immediately

 Deferred cancellation allows the target thread to periodically

check if it should be cancelled

 Pthread code to create and cancel a thread:

4.38 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Thread Cancellation (Cont.)

 Invoking thread cancellation requests cancellation, but actual

cancellation depends on thread state

 If thread has cancellation disabled, cancellation remains pending

until thread enables it

 Default type is deferred

 Cancellation only occurs when thread reaches cancellation

point

 I.e. pthread_testcancel()

 Then cleanup handler is invoked

 On Linux systems, thread cancellation is handled through signals

4.39 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Thread-Local Storage

 Thread-local storage (TLS) allows each thread to have its

own copy of data

 Useful when you do not have control over the thread creation

process (i.e., when using a thread pool)

 Different from local variables

 Local variables visible only during single function

invocation

 TLS visible across function invocations

 Similar to static data

 TLS is unique to each thread

4.40 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Scheduler Activations

 Both M:M and Two-level models require

communication to maintain the appropriate

number of kernel threads allocated to the

application

 Typically use an intermediate data structure

between user and kernel threads – lightweight

process (LWP)

 Appears to be a virtual processor on which

process can schedule user thread to run

 Each LWP attached to kernel thread

 How many LWPs to create?

 Scheduler activations provide upcalls - a

communication mechanism from the kernel to

the upcall handler in the thread library

 This communication allows an application to

maintain the correct number kernel threads

4.41 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Operating System Examples

 Windows Threads

 Linux Threads

4.42 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Windows Threads

 Windows implements the Windows API – primary API for Win

98, Win NT, Win 2000, Win XP, and Win 7

 Implements the one-to-one mapping, kernel-level

 Each thread contains

 A thread id

 Register set representing state of processor

 Separate user and kernel stacks for when thread runs in

user mode or kernel mode

 Private data storage area used by run-time libraries and

dynamic link libraries (DLLs)

 The register set, stacks, and private storage area are known as

the context of the thread

4.43 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Windows Threads (Cont.)

 The primary data structures of a thread include:

 ETHREAD (executive thread block) – includes pointer to

process to which thread belongs and to KTHREAD, in

kernel space

 KTHREAD (kernel thread block) – scheduling and

synchronization info, kernel-mode stack, pointer to TEB, in

kernel space

 TEB (thread environment block) – thread id, user-mode

stack, thread-local storage, in user space

4.44 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Windows Threads Data Structures

4.45 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Linux Threads

 Linux refers to them as tasks rather than threads

 Thread creation is done through clone() system call

 clone() allows a child task to share the address space of the

parent task (process)

 Flags control behavior

 struct task_struct points to process data structures

(shared or unique)

Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Chapter 5: Process
Synchronization

5.2 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Chapter 5: Process Synchronization

 Background
 The Critical-Section Problem
 Peterson’s Solution
 Synchronization Hardware
 Mutex Locks
 Semaphores
 Classic Problems of Synchronization
 Monitors
 Synchronization Examples
 Alternative Approaches

5.4 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Background

 Processes can execute concurrently
 May be interrupted at any time, partially completing

execution
 Concurrent access to shared data may result in data

inconsistency
 Maintaining data consistency requires mechanisms to ensure

the orderly execution of cooperating processes
 Illustration of the problem:

Suppose that we wanted to provide a solution to the
consumer-producer problem that fills all the buffers. We can
do so by having an integer counter that keeps track of the
number of full buffers. Initially, counter is set to 0. It is
incremented by the producer after it produces a new buffer
and is decremented by the consumer after it consumes a
buffer.

5.5 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Producer

while (true) {
/* produce an item in next produced */

while (counter == BUFFER_SIZE) ;

/* do nothing */

buffer[in] = next_produced;

in = (in + 1) % BUFFER_SIZE;

counter++;

}

5.6 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Consumer

while (true) {

while (counter == 0)

; /* do nothing */

next_consumed = buffer[out];

out = (out + 1) % BUFFER_SIZE;

counter--;

/* consume the item in next consumed */

}

5.7 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Race Condition

 counter++ could be implemented as

register1 = counter
register1 = register1 + 1
counter = register1

 counter-- could be implemented as

register2 = counter
register2 = register2 - 1
counter = register2

 Consider this execution interleaving with “count = 5” initially:
S0: producer execute register1 = counter {register1 = 5}
S1: producer execute register1 = register1 + 1 {register1 = 6}
S2: consumer execute register2 = counter {register2 = 5}
S3: consumer execute register2 = register2 – 1 {register2 = 4}
S4: producer execute counter = register1 {counter = 6 }
S5: consumer execute counter = register2 {counter = 4}

5.8 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Critical Section Problem

 Consider system of n processes {p0, p1, … pn-1}
 Each process has critical section segment of code

 Process may be changing common variables, updating
table, writing file, etc

 When one process in critical section, no other may be in its
critical section

 Critical section problem is to design protocol to solve this
problem

 Each process must ask permission to enter critical section in
entry section, may follow critical section with exit section,
then remainder section

5.9 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Critical Section

 General structure of process Pi

5.10 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Solution to Critical-Section Problem

1. Mutual Exclusion - If process Pi is executing in its critical
section, then no other processes can be executing in their
critical sections

2. Progress - If no process is executing in its critical section and
there exist some processes that wish to enter their critical
section, then the selection of the processes that will enter the
critical section next cannot be postponed indefinitely

3. Bounded Waiting - A bound must exist on the number of
times that other processes are allowed to enter their critical
sections after a process has made a request to enter its critical
section and before that request is granted
 Assume that each process executes at a nonzero speed
 No assumption concerning relative speed of the n

processes

5.11 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Critical-Section Handling in OS

Two approaches depending on if kernel is preemptive or non-
preemptive
 Preemptive – allows preemption of process when running

in kernel mode
 Non-preemptive – runs until exits kernel mode, blocks, or

voluntarily yields CPU
Essentially free of race conditions in kernel mode

5.12 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Peterson’s Solution

 Good algorithmic description of solving the problem
 Two process solution
 Assume that the load and store machine-language

instructions are atomic; that is, cannot be interrupted
 The two processes share two variables:

 int turn;

 Boolean flag[2]

 The variable turn indicates whose turn it is to enter the critical
section

 The flag array is used to indicate if a process is ready to enter
the critical section. flag[i] = true implies that process Pi is
ready!

5.13 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Algorithm for Process Pi

do {
flag[i] = true;

turn = j;

while (flag[j] && turn = = j);

critical section

flag[i] = false;

remainder section

} while (true);

5.14 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Peterson’s Solution (Cont.)

 Provable that the three CS requirement are met:
1. Mutual exclusion is preserved

Pi enters CS only if:

either flag[j] = false or turn = i

Pj enters CS only if:

either flag[i] = false or turn = j

2. Progress requirement is satisfied
3. Bounded-waiting requirement is met

5.15 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Synchronization Hardware

 Many systems provide hardware support for implementing the
critical section code.

 All solutions below based on idea of locking
 Protecting critical regions via locks

 Uniprocessors – could disable interrupts
 Currently running code would execute without preemption
 Generally too inefficient on multiprocessor systems

 Operating systems using this not broadly scalable
 Modern machines provide special atomic hardware instructions

 Atomic = non-interruptible
 Either test memory word and set value
 Or swap contents of two memory words

5.16 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Solution to Critical-section Problem Using Locks

do {

acquire lock

critical section

release lock

remainder section

} while (TRUE);

5.17 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

test_and_set Instruction

Definition:
boolean test_and_set (boolean *target)

{

boolean rv = *target;

*target = TRUE;

return rv:

}

1. Executed atomically
2. Returns the original value of passed parameter
3. Set the new value of passed parameter to “TRUE”.

5.18 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Solution using test_and_set()

 Shared Boolean variable lock, initialized to FALSE
 Solution:

do {
while (test_and_set(&lock))

; /* do nothing */

/* critical section */

lock = false;

/* remainder section */

} while (true);

5.19 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

compare_and_swap Instruction

Definition:
int compare_and_swap(int *value, int expected, int new_value) {

int temp = *value;

if (*value == expected)

*value = new_value;

return temp;

}

1. Executed atomically
2. Returns the original value of passed parameter “value”
3. Set the variable “value” the value of the passed parameter “new_value”

but only if “value” ==“expected”. That is, the swap takes place only under
this condition.

5.20 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Solution using compare_and_swap

 Shared integer “lock” initialized to 0;
 Solution:

do {
while (compare_and_swap(&lock, 0, 1) != 0)

; /* do nothing */

/* critical section */

lock = 0;

/* remainder section */

} while (true);

5.21 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Mutex Locks

 Previous solutions are complicated and generally inaccessible
to application programmers

 OS designers build software tools to solve critical section
problem

 Simplest is mutex lock
 Protect a critical section by first acquire() a lock then

release() the lock
 Boolean variable indicating if lock is available or not

 Calls to acquire() and release() must be atomic
 Usually implemented via hardware atomic instructions

 But this solution requires busy waiting
 This lock therefore called a spinlock

5.22 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

acquire() and release()

 acquire() {
while (!available)

; /* busy wait */

available = false;

}

 release() {

available = true;

}

 do {

acquire lock

critical section

release lock

remainder section

} while (true);

5.23 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Semaphore

 Synchronization tool that provides more sophisticated ways (than Mutex locks)
for process to synchronize their activities.

 Semaphore S – integer variable
 Can only be accessed via two indivisible (atomic) operations

 wait() and signal()

 Originally called P() and V()

 Definition of the wait() operation

wait(S) {

while (S <= 0)

; // busy wait

S--;

}

 Definition of the signal() operation

signal(S) {

S++;

}

5.24 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Semaphore Usage

 Counting semaphore – integer value can range over an unrestricted
domain

 Binary semaphore – integer value can range only between 0 and 1
 Same as a mutex lock

 Can solve various synchronization problems
 Consider P1 and P2 that require S1 to happen before S2

Create a semaphore “synch” initialized to 0
P1:

S1;

signal(synch);

P2:

wait(synch);

S2;

 Can implement a counting semaphore S as a binary semaphore

5.25 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Semaphore Implementation

 Must guarantee that no two processes can execute the wait()
and signal() on the same semaphore at the same time

 Thus, the implementation becomes the critical section problem
where the wait and signal code are placed in the critical
section
 Could now have busy waiting in critical section

implementation
 But implementation code is short
 Little busy waiting if critical section rarely occupied

5.26 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Semaphore Implementation with no Busy waiting

 With each semaphore there is an associated waiting queue
 Each entry in a waiting queue has two data items:

 value (of type integer)
 pointer to next record in the list

 Two operations:
 block – place the process invoking the operation on the

appropriate waiting queue
 wakeup – remove one of processes in the waiting queue

and place it in the ready queue
 typedef struct{

int value;

struct process *list;

} semaphore;

5.27 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Implementation with no Busy waiting (Cont.)

wait(semaphore *S) {

S->value--;

if (S->value < 0) {
add this process to S->list;

block();

}

}

signal(semaphore *S) {

S->value++;

if (S->value <= 0) {
remove a process P from S->list;

wakeup(P);

}

}

5.28 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Deadlock and Starvation

 Deadlock – two or more processes are waiting indefinitely for an
event that can be caused by only one of the waiting processes

 Let S and Q be two semaphores initialized to 1
P0 P1

wait(S); wait(Q);

wait(Q); wait(S);

... ...

signal(S); signal(Q);

signal(Q); signal(S);

 Starvation – indefinite blocking
 A process may never be removed from the semaphore queue in which it is

suspended
 Priority Inversion – Scheduling problem when lower-priority process

holds a lock needed by higher-priority process
 Solved via priority-inheritance protocol

5.29 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Classical Problems of Synchronization

 Classical problems used to test newly-proposed synchronization
schemes
 Bounded-Buffer Problem
 Readers and Writers Problem
 Dining-Philosophers Problem

5.30 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Bounded-Buffer Problem

 n buffers, each can hold one item

 Semaphore mutex initialized to the value 1

 Semaphore full initialized to the value 0

 Semaphore empty initialized to the value n

5.31 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Bounded Buffer Problem (Cont.)

 The structure of the producer process

do {

...
/* produce an item in next_produced */

...

wait(empty);

wait(mutex);

...
/* add next produced to the buffer */

...

signal(mutex);

signal(full);

} while (true);

5.32 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Bounded Buffer Problem (Cont.)

 The structure of the consumer process

Do {

wait(full);

wait(mutex);

...
/* remove an item from buffer to next_consumed */

...

signal(mutex);

signal(empty);

...
/* consume the item in next consumed */

...
} while (true);

5.33 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Readers-Writers Problem

 A data set is shared among a number of concurrent processes
 Readers – only read the data set; they do not perform any updates
 Writers – can both read and write

 Problem – allow multiple readers to read at the same time
 Only one single writer can access the shared data at the same time

 Several variations of how readers and writers are considered – all
involve some form of priorities

 Shared Data
 Data set

 Semaphore rw_mutex initialized to 1

 Semaphore mutex initialized to 1

 Integer read_count initialized to 0

5.34 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Readers-Writers Problem (Cont.)

 The structure of a writer process

do {
wait(rw_mutex);

...
/* writing is performed */

...

signal(rw_mutex);

} while (true);

5.35 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Readers-Writers Problem (Cont.)
 The structure of a reader process

do {
wait(mutex);
read_count++;
if (read_count == 1)

wait(rw_mutex);

signal(mutex);

...
/* reading is performed */

...

wait(mutex);
read count--;
if (read_count == 0)

signal(rw_mutex);

signal(mutex);

} while (true);

5.36 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Dining-Philosophers Problem

 Philosophers spend their lives alternating thinking and eating
 Don’t interact with their neighbors, occasionally try to pick up 2

chopsticks (one at a time) to eat from bowl
 Need both to eat, then release both when done

 In the case of 5 philosophers
 Shared data

 Bowl of rice (data set)
 Semaphore chopstick [5] initialized to 1

5.37 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Dining-Philosophers Problem Algorithm

 The structure of Philosopher i:
do {

wait (chopstick[i]);

wait (chopStick[(i + 1) % 5]);

// eat

signal (chopstick[i]);

signal (chopstick[(i + 1) % 5]);

// think

} while (TRUE);

 What is the problem with this algorithm?

5.38 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Dining-Philosophers Problem Algorithm (Cont.)

 Deadlock handling
 Allow at most 4 philosophers to be sitting

simultaneously at the table.
 Allow a philosopher to pick up the forks only if both

are available (picking must be done in a critical
section.

 Use an asymmetric solution -- an odd-numbered
philosopher picks up first the left chopstick and then
the right chopstick. Even-numbered philosopher picks
up first the right chopstick and then the left chopstick.

5.39 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Problems with Semaphores

 Incorrect use of semaphore operations:

 signal (mutex) …. wait (mutex)

 wait (mutex) … wait (mutex)

 Omitting of wait (mutex) or signal (mutex) (or both)

 Deadlock and starvation are possible.

5.40 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Monitors

 A high-level abstraction that provides a convenient and effective
mechanism for process synchronization

 Abstract data type, internal variables only accessible by code within the
procedure

 Only one process may be active within the monitor at a time
 But not powerful enough to model some synchronization schemes

monitor monitor-name
{
// shared variable declarations
procedure P1 (…) { …. }

procedure Pn (…) {……}

Initialization code (…) { … }
}

}

5.41 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Schematic view of a Monitor

5.42 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Condition Variables

 condition x, y;

 Two operations are allowed on a condition variable:

 x.wait() – a process that invokes the operation is
suspended until x.signal()

 x.signal() – resumes one of processes (if any) that
invoked x.wait()

 If no x.wait() on the variable, then it has no effect on
the variable

5.43 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Monitor with Condition Variables

5.44 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Condition Variables Choices

 If process P invokes x.signal(), and process Q is suspended in
x.wait(), what should happen next?

 Both Q and P cannot execute in paralel. If Q is resumed, then P
must wait

 Options include
 Signal and wait – P waits until Q either leaves the monitor or it

waits for another condition
 Signal and continue – Q waits until P either leaves the monitor or it

waits for another condition
 Both have pros and cons – language implementer can decide
 Monitors implemented in Concurrent Pascal compromise

 P executing signal immediately leaves the monitor, Q is
resumed

 Implemented in other languages including Mesa, C#, Java

5.45 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Monitor Solution to Dining Philosophers
monitor DiningPhilosophers
{

enum { THINKING; HUNGRY, EATING) state [5] ;
condition self [5];

void pickup (int i) {
state[i] = HUNGRY;
test(i);
if (state[i] != EATING) self[i].wait;

}

void putdown (int i) {
state[i] = THINKING;

// test left and right neighbors
test((i + 4) % 5);
test((i + 1) % 5);

}

5.46 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Solution to Dining Philosophers (Cont.)

void test (int i) {
if ((state[(i + 4) % 5] != EATING) &&
(state[i] == HUNGRY) &&
(state[(i + 1) % 5] != EATING)) {

state[i] = EATING ;
self[i].signal () ;
}

}

initialization_code() {
for (int i = 0; i < 5; i++)
state[i] = THINKING;

}
}

5.47 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

 Each philosopher i invokes the operations pickup() and
putdown() in the following sequence:

DiningPhilosophers.pickup(i);

EAT

DiningPhilosophers.putdown(i);

 No deadlock, but starvation is possible

Solution to Dining Philosophers (Cont.)

5.48 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Monitor Implementation Using Semaphores

 Variables

semaphore mutex; // (initially = 1)
semaphore next; // (initially = 0)
int next_count = 0;

 Each procedure F will be replaced by

wait(mutex);
…

body of F;
…

if (next_count > 0)
signal(next)

else
signal(mutex);

 Mutual exclusion within a monitor is ensured

5.49 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Monitor Implementation – Condition Variables

 For each condition variable x, we have:

semaphore x_sem; // (initially = 0)
int x_count = 0;

 The operation x.wait can be implemented as:

x_count++;
if (next_count > 0)

signal(next);
else

signal(mutex);
wait(x_sem);
x_count--;

5.50 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Monitor Implementation (Cont.)

 The operation x.signal can be implemented as:

if (x_count > 0) {
next_count++;
signal(x_sem);
wait(next);
next_count--;

}

5.51 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Resuming Processes within a Monitor

 If several processes queued on condition x, and x.signal()
executed, which should be resumed?

 FCFS frequently not adequate
 conditional-wait construct of the form x.wait(c)

 Where c is priority number
 Process with lowest number (highest priority) is

scheduled next

5.52 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

 Allocate a single resource among competing processes using
priority numbers that specify the maximum time a process
plans to use the resource

R.acquire(t);
...

access the resurce;
...

R.release;

 Where R is an instance of type ResourceAllocator

Single Resource allocation

5.53 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

A Monitor to Allocate Single Resource
monitor ResourceAllocator
{

boolean busy;
condition x;
void acquire(int time) {

if (busy)
x.wait(time);

busy = TRUE;
}
void release() {

busy = FALSE;
x.signal();

}
initialization code() {

busy = FALSE;
}

}

5.54 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Synchronization Examples

 Solaris
 Windows
 Linux
 Pthreads

5.55 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Solaris Synchronization

 Implements a variety of locks to support multitasking, multithreading
(including real-time threads), and multiprocessing

 Uses adaptive mutexes for efficiency when protecting data from short
code segments
 Starts as a standard semaphore spin-lock
 If lock held, and by a thread running on another CPU, spins
 If lock held by non-run-state thread, block and sleep waiting for signal of

lock being released

 Uses condition variables
 Uses readers-writers locks when longer sections of code need

access to data
 Uses turnstiles to order the list of threads waiting to acquire either an

adaptive mutex or reader-writer lock
 Turnstiles are per-lock-holding-thread, not per-object

 Priority-inheritance per-turnstile gives the running thread the highest of
the priorities of the threads in its turnstile

5.56 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Windows Synchronization

 Uses interrupt masks to protect access to global resources on
uniprocessor systems

 Uses spinlocks on multiprocessor systems
 Spinlocking-thread will never be preempted

 Also provides dispatcher objects user-land which may act
mutexes, semaphores, events, and timers
 Events

 An event acts much like a condition variable
 Timers notify one or more thread when time expired
 Dispatcher objects either signaled-state (object available)

or non-signaled state (thread will block)

5.57 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Linux Synchronization

 Linux:
 Prior to kernel Version 2.6, disables interrupts to

implement short critical sections
 Version 2.6 and later, fully preemptive

 Linux provides:
 Semaphores
 atomic integers
 spinlocks
 reader-writer versions of both

 On single-cpu system, spinlocks replaced by enabling and
disabling kernel preemption

5.58 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Pthreads Synchronization

 Pthreads API is OS-independent
 It provides:

 mutex locks
 condition variable

 Non-portable extensions include:
 read-write locks
 spinlocks

5.59 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Alternative Approaches

 Transactional Memory

 OpenMP

 Functional Programming Languages

5.60 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

 A memory transaction is a sequence of read-write operations
to memory that are performed atomically.

void update()
{

/* read/write memory */
}

Transactional Memory

5.61 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

 OpenMP is a set of compiler directives and API that support
parallel progamming.

void update(int value)
{

#pragma omp critical
{

count += value
}

}

The code contained within the #pragma omp critical directive
is treated as a critical section and performed atomically.

OpenMP

5.62 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

 Functional programming languages offer a different paradigm
than procedural languages in that they do not maintain state.

 Variables are treated as immutable and cannot change state
once they have been assigned a value.

 There is increasing interest in functional languages such as
Erlang and Scala for their approach in handling data races.

Functional Programming Languages

Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Chapter 6: CPU Scheduling

6.2 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Chapter 6: CPU Scheduling

 Basic Concepts

 Scheduling Criteria

 Scheduling Algorithms

 Thread Scheduling

 Multiple-Processor Scheduling

 Real-Time CPU Scheduling

 Operating Systems Examples

 Algorithm Evaluation

6.4 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Basic Concepts

 Maximum CPU utilization

obtained with multiprogramming

 CPU–I/O Burst Cycle – Process

execution consists of a cycle of

CPU execution and I/O wait

 CPU burst followed by I/O burst

 CPU burst distribution is of main

concern

6.5 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Histogram of CPU-burst Times

6.6 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

CPU Scheduler

 Short-term scheduler selects from among the processes in

ready queue, and allocates the CPU to one of them

 Queue may be ordered in various ways

 CPU scheduling decisions may take place when a process:

1. Switches from running to waiting state

2. Switches from running to ready state

3. Switches from waiting to ready

4. Terminates

 Scheduling under 1 and 4 is nonpreemptive

 All other scheduling is preemptive

 Consider access to shared data

 Consider preemption while in kernel mode

 Consider interrupts occurring during crucial OS activities

6.7 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Dispatcher

 Dispatcher module gives control of the CPU to the process

selected by the short-term scheduler; this involves:

 switching context

 switching to user mode

 jumping to the proper location in the user program to

restart that program

 Dispatch latency – time it takes for the dispatcher to stop

one process and start another running

6.8 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Scheduling Criteria

 CPU utilization – keep the CPU as busy as possible

 Throughput – # of processes that complete their execution per

time unit

 Turnaround time – amount of time to execute a particular

process

 Waiting time – amount of time a process has been waiting in the

ready queue

 Response time – amount of time it takes from when a request

was submitted until the first response is produced, not output (for

time-sharing environment)

6.9 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Scheduling Algorithm Optimization Criteria

 Max CPU utilization

 Max throughput

 Min turnaround time

 Min waiting time

 Min response time

6.10 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

First- Come, First-Served (FCFS) Scheduling

 Process Burst Time

 P1 24

 P2 3

 P3 3

 Suppose that the processes arrive in the order: P1 , P2 , P3

The Gantt Chart for the schedule is:

 Waiting time for P1 = 0; P2 = 24; P3 = 27

 Average waiting time: (0 + 24 + 27)/3 = 17

P P P
1 2 3

0 24 3027

6.11 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

FCFS Scheduling (Cont.)

Suppose that the processes arrive in the order:

 P2 , P3 , P1

 The Gantt chart for the schedule is:

 Waiting time for P1 = 6; P2 = 0; P3 = 3

 Average waiting time: (6 + 0 + 3)/3 = 3

 Much better than previous case

 Convoy effect - short process behind long process

 Consider one CPU-bound and many I/O-bound processes

P
1

0 3 6 30

P
2

P
3

6.12 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Shortest-Job-First (SJF) Scheduling

 Associate with each process the length of its next CPU burst

 Use these lengths to schedule the process with the shortest

time

 SJF is optimal – gives minimum average waiting time for a given

set of processes

 The difficulty is knowing the length of the next CPU request

 Could ask the user

6.13 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Example of SJF

 ProcessArrival Time Burst Time

 P1 0.0 6

 P2 2.0 8

 P3 4.0 7

 P4 5.0 3

 SJF scheduling chart

 Average waiting time = (3 + 16 + 9 + 0) / 4 = 7

P
3

0 3 24

P
4

P
1

169

P
2

6.14 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Determining Length of Next CPU Burst

 Can only estimate the length – should be similar to the previous one

 Then pick process with shortest predicted next CPU burst

 Can be done by using the length of previous CPU bursts, using

exponential averaging

 Commonly, α set to ½

 Preemptive version called shortest-remaining-time-first

:Define 4.

10 , 3.

burst CPU next the for value predicted 2.

burst CPU of length actual 1.

 1n

th
n nt

 .1
1 nnn

t

6.15 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Prediction of the Length of the Next CPU Burst

6.16 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Examples of Exponential Averaging

 =0

 n+1 = n

 Recent history does not count

 =1

 n+1 = tn

 Only the actual last CPU burst counts

 If we expand the formula, we get:

n+1 = tn+(1 -) tn -1 + …

 +(1 -)j tn -j + …

 +(1 -)n +1 0

 Since both and (1 -) are less than or equal to 1, each
successive term has less weight than its predecessor

6.17 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Example of Shortest-remaining-time-first

 Now we add the concepts of varying arrival times and preemption to

the analysis

 ProcessAarri Arrival TimeT Burst Time

 P1 0 8

 P2 1 4

 P3 2 9

 P4 3 5

 Preemptive SJF Gantt Chart

 Average waiting time = [(10-1)+(1-1)+(17-2)+5-3)]/4 = 26/4 = 6.5

msec

P
4

0 1 26

P
1

P
2

10

P
3

P
1

5 17

6.18 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Priority Scheduling

 A priority number (integer) is associated with each process

 The CPU is allocated to the process with the highest priority

(smallest integer highest priority)

 Preemptive

 Nonpreemptive

 SJF is priority scheduling where priority is the inverse of predicted

next CPU burst time

 Problem Starvation – low priority processes may never execute

 Solution Aging – as time progresses increase the priority of the

process

6.19 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Example of Priority Scheduling

 ProcessA arri Burst TimeT Priority

 P1 10 3

 P2 1 1

 P3 2 4

 P4 1 5

 P5 5 2

 Priority scheduling Gantt Chart

 Average waiting time = 8.2 msec

1

0 1 19

P
1

P
2

16

P
4

P
3

6 18

P

6.20 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Round Robin (RR)

 Each process gets a small unit of CPU time (time quantum q),

usually 10-100 milliseconds. After this time has elapsed, the

process is preempted and added to the end of the ready queue.

 If there are n processes in the ready queue and the time

quantum is q, then each process gets 1/n of the CPU time in

chunks of at most q time units at once. No process waits more

than (n-1)q time units.

 Timer interrupts every quantum to schedule next process

 Performance

 q large FIFO

 q small q must be large with respect to context switch,

otherwise overhead is too high

6.21 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Example of RR with Time Quantum = 4

 Process Burst Time

 P1 24

 P2 3

 P3 3

 The Gantt chart is:

 Typically, higher average turnaround than SJF, but better
response

 q should be large compared to context switch time

 q usually 10ms to 100ms, context switch < 10 usec

P P P
1 1 1

0 18 3026144 7 10 22

P
2

P
3

P
1

P
1

P
1

6.22 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Time Quantum and Context Switch Time

6.23 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Turnaround Time Varies With The Time Quantum

80% of CPU bursts
should be shorter than q

6.24 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Multilevel Queue

 Ready queue is partitioned into separate queues, eg:

 foreground (interactive)

 background (batch)

 Process permanently in a given queue

 Each queue has its own scheduling algorithm:

 foreground – RR

 background – FCFS

 Scheduling must be done between the queues:

 Fixed priority scheduling; (i.e., serve all from foreground then

from background). Possibility of starvation.

 Time slice – each queue gets a certain amount of CPU time

which it can schedule amongst its processes; i.e., 80% to

foreground in RR

 20% to background in FCFS

6.25 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Multilevel Queue Scheduling

6.26 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Multilevel Feedback Queue

 A process can move between the various queues; aging can be

implemented this way

 Multilevel-feedback-queue scheduler defined by the following

parameters:

 number of queues

 scheduling algorithms for each queue

 method used to determine when to upgrade a process

 method used to determine when to demote a process

 method used to determine which queue a process will enter

when that process needs service

6.27 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Example of Multilevel Feedback Queue

 Three queues:

 Q0 – RR with time quantum 8

milliseconds

 Q1 – RR time quantum 16 milliseconds

 Q2 – FCFS

 Scheduling

 A new job enters queue Q0 which is

served FCFS

 When it gains CPU, job receives 8

milliseconds

 If it does not finish in 8

milliseconds, job is moved to

queue Q1

 At Q1 job is again served FCFS and

receives 16 additional milliseconds

 If it still does not complete, it is

preempted and moved to queue Q2

6.28 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Thread Scheduling

 Distinction between user-level and kernel-level threads

 When threads supported, threads scheduled, not processes

 Many-to-one and many-to-many models, thread library schedules

user-level threads to run on LWP

 Known as process-contention scope (PCS) since scheduling

competition is within the process

 Typically done via priority set by programmer

 Kernel thread scheduled onto available CPU is system-contention

scope (SCS) – competition among all threads in system

6.29 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Pthread Scheduling

 API allows specifying either PCS or SCS during thread creation

 PTHREAD_SCOPE_PROCESS schedules threads using

PCS scheduling

 PTHREAD_SCOPE_SYSTEM schedules threads using

SCS scheduling

 Can be limited by OS – Linux and Mac OS X only allow

PTHREAD_SCOPE_SYSTEM

6.30 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Pthread Scheduling API
#include <pthread.h>

#include <stdio.h>

#define NUM_THREADS 5

int main(int argc, char *argv[]) {

 int i, scope;

 pthread_t tid[NUM THREADS];

 pthread_attr_t attr;

 /* get the default attributes */

 pthread_attr_init(&attr);

 /* first inquire on the current scope */

 if (pthread_attr_getscope(&attr, &scope) != 0)

 fprintf(stderr, "Unable to get scheduling scope\n");

 else {

 if (scope == PTHREAD_SCOPE_PROCESS)

 printf("PTHREAD_SCOPE_PROCESS");

 else if (scope == PTHREAD_SCOPE_SYSTEM)

 printf("PTHREAD_SCOPE_SYSTEM");

 else

 fprintf(stderr, "Illegal scope value.\n");

 }

6.31 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Pthread Scheduling API

 /* set the scheduling algorithm to PCS or SCS */

 pthread_attr_setscope(&attr, PTHREAD_SCOPE_SYSTEM);

 /* create the threads */

 for (i = 0; i < NUM_THREADS; i++)

 pthread_create(&tid[i],&attr,runner,NULL);

 /* now join on each thread */

 for (i = 0; i < NUM_THREADS; i++)

 pthread_join(tid[i], NULL);

}

/* Each thread will begin control in this function */

void *runner(void *param)

{

 /* do some work ... */

 pthread_exit(0);

}

6.32 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Multiple-Processor Scheduling

 CPU scheduling more complex when multiple CPUs are

available

 Homogeneous processors within a multiprocessor

 Asymmetric multiprocessing – only one processor accesses

the system data structures, alleviating the need for data sharing

 Symmetric multiprocessing (SMP) – each processor is self-

scheduling, all processes in common ready queue, or each has

its own private queue of ready processes

 Currently, most common

 Processor affinity – process has affinity for processor on which

it is currently running

 soft affinity

 hard affinity

 Variations including processor sets

6.33 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

NUMA and CPU Scheduling

Note that memory-placement algorithms can also consider affinity

6.34 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Multiple-Processor Scheduling – Load Balancing

 If SMP, need to keep all CPUs loaded for efficiency

 Load balancing attempts to keep workload evenly distributed

 Push migration – periodic task checks load on each processor,

and if found pushes task from overloaded CPU to other CPUs

 Pull migration – idle processors pulls waiting task from busy

processor

6.35 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Multicore Processors

 Recent trend to place multiple processor cores on same

physical chip

 Faster and consumes less power

 Multiple threads per core also growing

 Takes advantage of memory stall to make progress on

another thread while memory retrieve happens

6.36 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Multithreaded Multicore System

6.37 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Real-Time CPU Scheduling

 Can present obvious

challenges

 Soft real-time systems – no

guarantee as to when critical

real-time process will be

scheduled

 Hard real-time systems –

task must be serviced by its

deadline

 Two types of latencies affect

performance

1. Interrupt latency – time from

arrival of interrupt to start of

routine that services interrupt

2. Dispatch latency – time for

schedule to take current process

off CPU and switch to another

6.38 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Real-Time CPU Scheduling (Cont.)

 Conflict phase of

dispatch latency:

1. Preemption of

any process

running in kernel

mode

2. Release by low-

priority process

of resources

needed by high-

priority

processes

6.39 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Priority-based Scheduling

 For real-time scheduling, scheduler must support preemptive, priority-

based scheduling

 But only guarantees soft real-time

 For hard real-time must also provide ability to meet deadlines

 Processes have new characteristics: periodic ones require CPU at

constant intervals

 Has processing time t, deadline d, period p

 0 ≤ t ≤ d ≤ p

 Rate of periodic task is 1/p

6.40 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Virtualization and Scheduling

 Virtualization software schedules multiple guests onto

CPU(s)

 Each guest doing its own scheduling

 Not knowing it doesn’t own the CPUs

 Can result in poor response time

 Can effect time-of-day clocks in guests

 Can undo good scheduling algorithm efforts of guests

