
Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Chapter 3: Processes

3.2 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Chapter 3: Processes

 Process Concept
 Process Scheduling
 Operations on Processes
 Interprocess Communication
 Examples of IPC Systems
 Communication in Client-Server Systems

3.4 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Process Concept

 An operating system executes a variety of programs:
 Batch system – jobs
 Time-shared systems – user programs or tasks

 Textbook uses the terms job and process almost interchangeably
 Process – a program in execution; process execution must

progress in sequential fashion
 Multiple parts

 The program code, also called text section
 Current activity including program counter, processor

registers
 Stack containing temporary data

 Function parameters, return addresses, local variables
 Data section containing global variables
 Heap containing memory dynamically allocated during run time

3.5 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Process Concept (Cont.)

 Program is passive entity stored on disk (executable file),
process is active
 Program becomes process when executable file loaded into

memory
 Execution of program started via GUI mouse clicks, command

line entry of its name, etc
 One program can be several processes

 Consider multiple users executing the same program

3.6 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Process in Memory

3.7 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Process State

 As a process executes, it changes state
 new: The process is being created
 running: Instructions are being executed
 waiting: The process is waiting for some event to occur
 ready: The process is waiting to be assigned to a processor
 terminated: The process has finished execution

3.8 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Diagram of Process State

3.9 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Process Control Block (PCB)

Information associated with each process
(also called task control block)
 Process state – running, waiting, etc
 Program counter – location of

instruction to next execute
 CPU registers – contents of all process-

centric registers
 CPU scheduling information- priorities,

scheduling queue pointers
 Memory-management information –

memory allocated to the process
 Accounting information – CPU used,

clock time elapsed since start, time
limits

 I/O status information – I/O devices
allocated to process, list of open files

3.10 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

CPU Switch From Process to Process

3.11 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Threads

 So far, process has a single thread of execution
 Consider having multiple program counters per process

 Multiple locations can execute at once
 Multiple threads of control -> threads

 Must then have storage for thread details, multiple program
counters in PCB

 See next chapter

3.12 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Process Representation in Linux

Represented by the C structure task_struct

pid t_pid; /* process identifier */
long state; /* state of the process */
unsigned int time_slice /* scheduling information */
struct task_struct *parent; /* this process’s parent */
struct list_head children; /* this process’s children */
struct files_struct *files; /* list of open files */
struct mm_struct *mm; /* address space of this process */

3.13 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Process Scheduling

 Maximize CPU use, quickly switch processes onto CPU for
time sharing

 Process scheduler selects among available processes for
next execution on CPU

 Maintains scheduling queues of processes
 Job queue – set of all processes in the system
 Ready queue – set of all processes residing in main

memory, ready and waiting to execute
 Device queues – set of processes waiting for an I/O device
 Processes migrate among the various queues

3.14 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Ready Queue And Various I/O Device Queues

3.15 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Representation of Process Scheduling

 Queueing diagram represents queues, resources, flows

3.16 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Schedulers

 Short-term scheduler (or CPU scheduler) – selects which process should
be executed next and allocates CPU
 Sometimes the only scheduler in a system
 Short-term scheduler is invoked frequently (milliseconds)  (must be

fast)
 Long-term scheduler (or job scheduler) – selects which processes should

be brought into the ready queue
 Long-term scheduler is invoked infrequently (seconds, minutes) 

(may be slow)
 The long-term scheduler controls the degree of multiprogramming

 Processes can be described as either:
 I/O-bound process – spends more time doing I/O than computations,

many short CPU bursts
 CPU-bound process – spends more time doing computations; few very

long CPU bursts
 Long-term scheduler strives for good process mix

3.17 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Addition of Medium Term Scheduling

 Medium-term scheduler can be added if degree of multiple
programming needs to decrease
 Remove process from memory, store on disk, bring back in

from disk to continue execution: swapping

3.18 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Multitasking in Mobile Systems

 Some mobile systems (e.g., early version of iOS) allow only one
process to run, others suspended

 Due to screen real estate, user interface limits iOS provides for a
 Single foreground process- controlled via user interface
 Multiple background processes– in memory, running, but not

on the display, and with limits
 Limits include single, short task, receiving notification of events,

specific long-running tasks like audio playback
 Android runs foreground and background, with fewer limits

 Background process uses a service to perform tasks
 Service can keep running even if background process is

suspended
 Service has no user interface, small memory use

3.19 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Context Switch

 When CPU switches to another process, the system must save
the state of the old process and load the saved state for the
new process via a context switch

 Context of a process represented in the PCB
 Context-switch time is overhead; the system does no useful

work while switching
 The more complex the OS and the PCB  the longer the

context switch
 Time dependent on hardware support

 Some hardware provides multiple sets of registers per CPU
 multiple contexts loaded at once

3.20 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Operations on Processes

 System must provide mechanisms for:
 process creation,
 process termination,
 and so on as detailed next

3.21 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Process Creation

 Parent process create children processes, which, in turn
create other processes, forming a tree of processes

 Generally, process identified and managed via a process
identifier (pid)

 Resource sharing options
 Parent and children share all resources
 Children share subset of parent’s resources
 Parent and child share no resources

 Execution options
 Parent and children execute concurrently
 Parent waits until children terminate

3.22 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

A Tree of Processes in Linux

init
pid = 1

sshd
pid = 3028

login
pid = 8415

kthreadd
pid = 2

sshd
pid = 3610

pdflush
pid = 200

khelper
pid = 6

tcsch
pid = 4005

emacs
pid = 9204

bash
pid = 8416

ps
pid = 9298

After system booted

Performing tasks on
behalf of the kernel

Managing clients that
connect to the
system by using
ssh

Managing clients that directly
log onto the system.

3.23 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Process Creation (Cont.)

 Address space
 Child duplicate of parent (has the same program as the

parent)
 Child has a program loaded into it

 UNIX examples
 fork() system call creates new process. The new process

consists of a copy of the address space of the original
process.

 exec() system call used after a fork() to replace the
process’ memory space with a new program

move itself off the ready queue until the termination of the child

3.24 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Representation of Process Scheduling

 Queueing diagram represents queues, resources, flows

3.25 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

C Program Forking Separate Process

The only difference is
that the value of pid for
the child process is
zero, while that for the
parent is the actual pid
of the child process.

3.26 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Process Termination

 Process executes last statement and then asks the operating
system to delete it using the exit() system call.
 Returns status data from child to parent (via wait())

 Process’ resources are deallocated by operating system
 Parent may terminate the execution of children processes using

the abort() system call. Some reasons for doing so:

 Child has exceeded allocated resources
 Task assigned to child is no longer required
 The parent is exiting and the operating systems does not

allow a child to continue if its parent terminates

3.27 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Process Termination

 Some operating systems do not allow child to exist if its parent has
terminated. If a process terminates, then all its children must also
be terminated.
 cascading termination. All children, grandchildren, etc. are

terminated.
 The termination is initiated by the operating system.

 The parent process may wait for termination of a child process by
using the wait()system call. The call returns status information
and the pid of the terminated process

pid = wait(&status);

 If no parent waiting (did not invoke wait()) process is a zombie
 Once the parent calls wait(), the process identifier of the

zombie process and its entry in the process table are released.
 If parent terminated without invoking wait , process is an orphan

 Assigning the init process as the new parent, periodically
invokes wait()

3.28 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Interprocess Communication

 Processes within a system may be independent or cooperating
 Cooperating process can affect or be affected by other processes,

including sharing data
 Reasons for cooperating processes:

 Information sharing (shared files)
 Computation speedup (parallel subtasks)
 Modularity (system function divided into separate processes)
 Convenience

 Cooperating processes need interprocess communication (IPC)
 Two models of IPC

 Shared memory
 Message passing

3.29 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Communications Models

(a) Message passing. (b) shared memory.

3.30 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Interprocess Communication – Shared Memory

 An area of memory shared among the processes that wish to
communicate
 Typically, a shared-memory region resides in the address space of the

process creating the shared-memory segment. Other processes that wish to
communicate using this shared-memory segment must attach it to their
address space.

 The communication is under the control of the users processes not the
operating system.

 Major issues is to provide mechanism that will allow the user processes
to synchronize their actions when they access shared memory.

 Synchronization is discussed in great details in Chapter 5.

3.31 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Producer-Consumer Problem

 Paradigm for cooperating processes, producer process produces
information that is consumed by a consumer process
 unbounded-buffer places no practical limit on the size of the buffer

 The consumer may have to wait for new items, but the producer
can always produce new items.

 bounded-buffer assumes that there is a fixed buffer size
 The consumer must wait if the buffer is empty, and the producer

must wait if the buffer is full.

3.32 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Bounded-Buffer – Shared-Memory Solution

 Shared data
#define BUFFER_SIZE 10

typedef struct {

. . .

} item;

item buffer[BUFFER_SIZE];

int in = 0;

int out = 0;

3.33 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Bounded-Buffer – Producer

item next_produced;
while (true) {

/* produce an item in next produced */
while (((in + 1) % BUFFER_SIZE) == out)

; /* do nothing */
buffer[in] = next_produced;
in = (in + 1) % BUFFER_SIZE;

}

3.34 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Bounded Buffer – Consumer

item next_consumed;

while (true) {
while (in == out)

; /* do nothing */
next_consumed = buffer[out];

out = (out + 1) % BUFFER_SIZE;

/* consume the item in next consumed */

}

Solution is correct, but can only use BUFFER_SIZE-1
elements. How to design a solution in which BUFFER
SIZE items can be in the buffer at the same time?

3.35 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Interprocess Communication – Message Passing

 Mechanism for processes to communicate and to synchronize
their actions

 Message system – processes communicate with each other
without resorting to shared variables

 IPC facility provides two operations:
 send(message)
 receive(message)

 Particularly useful in a distributed environment
 The message size is either fixed or variable

3.36 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Message Passing (Cont.)

 If processes P and Q wish to communicate, they need to:
 Establish a communication link between them
 Exchange messages via send/receive

 Implementation issues:
 How are links established?
 Can a link be associated with more than two processes?
 How many links can there be between every pair of

communicating processes?
 What is the capacity of a link?
 Is the size of a message that the link can accommodate fixed or

variable?
 Is a link unidirectional or bi-directional?

3.37 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Message Passing (Cont.)

 Implementation of communication link
 Physical:

 Shared memory
 Hardware bus
 Network

 Logical:
 Direct or indirect
 Synchronous or asynchronous
 Automatic or explicit buffering

3.38 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Direct Communication

 Processes must name each other explicitly:
 send (P, message) – send a message to process P
 receive(Q, message) – receive a message from process Q

 Properties of communication link
 Links are established automatically
 A link is associated with exactly one pair of communicating

processes
 Between each pair there exists exactly one link
 The link may be unidirectional, but is usually bi-directional

3.39 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Indirect Communication

 Messages are directed and received from mailboxes (also referred
to as ports)
 Each mailbox has a unique id
 Processes can communicate only if they share a mailbox

 Properties of communication link
 Link established only if processes share a common mailbox
 A link may be associated with many processes
 Each pair of processes may share several communication links
 Link may be unidirectional or bi-directional

3.40 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Indirect Communication

 Operations
 create a new mailbox (port)
 send and receive messages through mailbox
 destroy a mailbox

 Primitives are defined as:
send(A, message) – send a message to mailbox A
receive(A, message) – receive a message from mailbox A

3.41 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Indirect Communication

 Mailbox sharing
 P1, P2, and P3 share mailbox A
 P1, sends; P2 and P3 receive
 Who gets the message?

 Solutions
 Allow a link to be associated with at most two processes
 Allow only one process at a time to execute a receive

operation
 Allow the system to select arbitrarily the receiver.

Sender is notified who the receiver was.

3.42 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Synchronization

 Message passing may be either blocking or non-blocking
 Blocking is considered synchronous

 Blocking send -- the sender is blocked until the message is
received

 Blocking receive -- the receiver is blocked until a message
is available

 Non-blocking is considered asynchronous
 Non-blocking send -- the sender sends the message and

continue
 Non-blocking receive -- the receiver receives:

 A valid message, or
 Null message

 Different combinations possible

3.43 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Synchronization (Cont.)

 Producer-consumer becomes trivial

message next_produced;

while (true) {
/* produce an item in next produced */

send(next_produced);

}

message next_consumed;
while (true) {

receive(next_consumed);

/* consume the item in next consumed */
}

3.44 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Buffering

 Queue of messages attached to the link.
 implemented in one of three ways

1. Zero capacity – no messages are queued on a link.
Sender must wait for receiver (rendezvous)

2. Bounded capacity – finite length of n messages
Sender must wait if link full

3. Unbounded capacity – infinite length
Sender never waits

3.45 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Communications in Client-Server Systems

 Sockets
 Remote Procedure Calls
 Pipes
 Remote Method Invocation (Java)

3.46 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Sockets

 A socket is defined as an endpoint for communication

 Concatenation of IP address and port – a number included at
start of message packet to differentiate network services on a
host

 The socket 161.25.19.8:1625 refers to port 1625 on host
161.25.19.8

 Communication consists between a pair of sockets

 All ports below 1024 are well known, used for standard
services

 Special IP address 127.0.0.1 (loopback) to refer to system on
which process is running

3.47 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Socket Communication

3.48 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Socket programming

Two socket types for two transport services:
 UDP: unreliable datagram
 TCP: reliable, byte stream-oriented

Application Example:
1. Client reads a line of characters (data) from its keyboard and sends

the data to the server.
2. The server receives the data and converts characters to uppercase.
3. The server sends the modified data to the client.
4. The client receives the modified data and displays the line on its

screen.

3.49 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Socket programming with UDP

UDP: no “connection” between client & server
 no handshaking before sending data
 sender explicitly attaches IP destination address and port # to

each packet
 rcvr extracts sender IP address and port# from received packet

UDP: transmitted data may be lost or received out-of-order

Application viewpoint:
 UDP provides unreliable transfer of groups of bytes

(“datagrams”) between client and server

3.50 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Client/server socket interaction: UDP

close
clientSocket

read datagram from
clientSocket

create socket:
clientSocket =
socket(AF_INET,SOCK_DGRAM)

Create datagram with server IP and
port=x; send datagram via
clientSocket

create socket, port= x:
serverSocket =
socket(AF_INET,SOCK_DGRAM)

read datagram from
serverSocket

write reply to
serverSocket
specifying
client address,
port number

server (running on serverIP) client

3.51 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Example app: UDP client

from socket import *
serverName = ‘hostname’
serverPort = 12000
clientSocket = socket(socket.AF_INET,

socket.SOCK_DGRAM)
message = raw_input(’Input lowercase sentence:’)
clientSocket.sendto(message,(serverName, serverPort))

modifiedMessage, serverAddress =
clientSocket.recvfrom(2048)

print modifiedMessage
clientSocket.close()

Python UDPClient
include Python’s socket
library

create UDP socket for
server

get user keyboard
input

Attach server name, port to
message; send into socket

print out received string
and close socket

read reply characters from
socket into string

3.52 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Example app: UDP server

from socket import *
serverPort = 12000
serverSocket = socket(AF_INET, SOCK_DGRAM)
serverSocket.bind(('', serverPort))
print “The server is ready to receive”
while 1:

message, clientAddress = serverSocket.recvfrom(2048)
modifiedMessage = message.upper()
serverSocket.sendto(modifiedMessage, clientAddress)

Python UDPServer

create UDP socket

bind socket to local port
number 12000

loop forever

Read from UDP socket into
message, getting client’s
address (client IP and port)

send upper case string
back to this client

3.53 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Socket programming with TCP

client must contact server
 server process must first be

running
 server must have created

socket (door) that welcomes
client’s contact

client contacts server by:
 Creating TCP socket, specifying

IP address, port number of
server process

 when client creates socket:
client TCP establishes
connection to server TCP

 when contacted by client, server
TCP creates new socket for
server process to communicate
with that particular client
 allows server to talk with

multiple clients
 source port numbers used to

distinguish clients (more in
Chap 3)

TCP provides reliable, in-order
byte-stream transfer (“pipe”)
between client and server

application viewpoint:

3.54 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Client/server socket interaction: TCP

wait for incoming
connection request
connectionSocket =
serverSocket.accept()

create socket,
port=x, for incoming
request:
serverSocket = socket()

create socket,
connect to hostid, port=x
clientSocket = socket()

server (running on hostid) client

send request using
clientSocketread request from

connectionSocket

write reply to
connectionSocket

TCP
connection setup

close
connectionSocket

read reply from
clientSocket

close
clientSocket

3.55 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Example app: TCP client

from socket import *
serverName = ’servername’
serverPort = 12000
clientSocket = socket(AF_INET, SOCK_STREAM)
clientSocket.connect((serverName,serverPort))
sentence = raw_input(‘Input lowercase sentence:’)
clientSocket.send(sentence)
modifiedSentence = clientSocket.recv(1024)
print ‘From Server:’, modifiedSentence
clientSocket.close()

Python TCPClient

create TCP socket for
server, remote port 12000

No need to attach server
name, port

3.56 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Example app: TCP server

from socket import *
serverPort = 12000
serverSocket = socket(AF_INET,SOCK_STREAM)
serverSocket.bind((‘’,serverPort))
serverSocket.listen(1)
print ‘The server is ready to receive’
while 1:

connectionSocket, addr = serverSocket.accept()

sentence = connectionSocket.recv(1024)
capitalizedSentence = sentence.upper()
connectionSocket.send(capitalizedSentence)
connectionSocket.close()

Python TCPServer

create TCP welcoming
socket

server begins listening for
incoming TCP requests

loop forever

server waits on accept()
for incoming requests, new
socket created on return

read bytes from socket (but
not address as in UDP)

close connection to this
client (but not welcoming
socket)

Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Chapter 4: Threads

4.2 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Chapter 4: Threads

 Overview

 Multicore Programming

 Multithreading Models

 Thread Libraries

 Implicit Threading

 Threading Issues

 Operating System Examples

4.4 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Motivation

 Most modern applications are multithreaded

 Threads run within application

 Multiple tasks with the application can be implemented by

separate threads

 Update display

 Fetch data

 Spell checking

 Answer a network request

 Process creation is heavy-weight while thread creation is

light-weight

 Can simplify code, increase efficiency

 Kernels are generally multithreaded

4.5 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Multithreaded Server Architecture

4.6 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Benefits

 Responsiveness – may allow continued execution if part of

process is blocked, especially important for user interfaces

 Resource Sharing – threads share resources of process, easier

than shared memory or message passing

 Economy – cheaper than process creation, thread switching

lower overhead than context switching

 Scalability – process can take advantage of multiprocessor

architectures

4.7 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Multicore Programming

 Multicore or multiprocessor systems putting pressure on

programmers, challenges include:

 Dividing activities

 Balance

 Data splitting

 Data dependency

 Testing and debugging

 Parallelism implies a system can perform more than one task

simultaneously

 Concurrency supports more than one task making progress

 Single processor / core, scheduler providing concurrency

4.8 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Multicore Programming (Cont.)

 Types of parallelism

 Data parallelism – distributes subsets of the same data

across multiple cores, same operation on each

 Task parallelism – distributing threads across cores, each

thread performing unique operation

 As # of threads grows, so does architectural support for threading

 CPUs have cores as well as hardware threads

 Consider Oracle SPARC T4 with 8 cores, and 8 hardware

threads per core

4.9 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Concurrency vs. Parallelism

 Concurrent execution on single-core system:

 Parallelism on a multi-core system:

4.10 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Single and Multithreaded Processes

4.11 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Amdahl’s Law

 Identifies performance gains from adding additional cores to an

application that has both serial and parallel components

 S is serial portion

 N processing cores

 That is, if application is 75% parallel / 25% serial, moving from 1 to 2

cores results in speedup of 1.6 times

 As N approaches infinity, speedup approaches 1 / S

Serial portion of an application has disproportionate effect on

performance gained by adding additional cores

 But does the law take into account contemporary multicore systems?

4.12 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

User Threads and Kernel Threads

 User threads - management done by user-level threads library

 Three primary thread libraries:

 POSIX Pthreads

 Windows threads

 Java threads

 Kernel threads - Supported by the Kernel

 Examples – virtually all general purpose operating systems, including:

 Windows

 Solaris

 Linux

 Tru64 UNIX

 Mac OS X

4.13 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Multithreading Models

 Many-to-One

 One-to-One

 Many-to-Many

4.14 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Many-to-One

 Many user-level threads mapped to

single kernel thread

 One thread blocking causes all to block

 Multiple threads may not run in parallel

on muticore system because only one

may be in kernel at a time

 Few systems currently use this model

 Examples:

 Solaris Green Threads

 GNU Portable Threads

4.15 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

One-to-One

 Each user-level thread maps to kernel thread

 Creating a user-level thread creates a kernel thread

 More concurrency than many-to-one

 Number of threads per process sometimes

restricted due to overhead

 Examples

 Windows

 Linux

 Solaris 9 and later

4.16 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Many-to-Many Model

 Allows many user level threads to be

mapped to many kernel threads

 Allows the operating system to create

a sufficient number of kernel threads

 Solaris prior to version 9

 Windows with the ThreadFiber

package

4.17 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Two-level Model

 Similar to M:M, except that it allows a user thread to be

bound to kernel thread

 Examples

 IRIX

 HP-UX

 Tru64 UNIX

 Solaris 8 and earlier

4.18 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Thread Libraries

 Thread library provides programmer with API for creating

and managing threads

 Two primary ways of implementing

 Library entirely in user space

 Kernel-level library supported by the OS

4.19 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Pthreads

 May be provided either as user-level or kernel-level

 A POSIX standard (IEEE 1003.1c) API for thread creation and

synchronization

 Specification, not implementation

 API specifies behavior of the thread library, implementation is

up to development of the library

 Common in UNIX operating systems (Solaris, Linux, Mac OS X)

4.20 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Pthreads Example

4.21 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Pthreads Example (Cont.)

4.20 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Pthreads Example (Cont.)

4.22 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Pthreads Code for Joining 10 Threads

4.21 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Pthreads Code for Joining 10 Threads

4.23 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Windows Multithreaded C Program

4.24 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Windows Multithreaded C Program (Cont.)

4.25 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Java Threads

 Java threads are managed by the JVM

 Typically implemented using the threads model provided by

underlying OS

 Java threads may be created by:

 Extending Thread class

 Implementing the Runnable interface

4.26 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Java Multithreaded Program

4.27 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Java Multithreaded Program (Cont.)

4.28 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Implicit Threading

 Growing in popularity as numbers of threads increase,

program correctness more difficult with explicit threads

 Creation and management of threads done by compilers and

run-time libraries rather than programmers

 Three methods explored

 Thread Pools

 OpenMP

 Grand Central Dispatch

 Other methods include Microsoft Threading Building Blocks
(TBB), java.util.concurrent package

4.29 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Thread Pools

 Create a number of threads in a pool where they await work

 Advantages:

 Usually slightly faster to service a request with an existing

thread than create a new thread

 Allows the number of threads in the application(s) to be

bound to the size of the pool

 Separating task to be performed from mechanics of

creating task allows different strategies for running task

 i.e.Tasks could be scheduled to run periodically

 Windows API supports thread pools:

4.30 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

OpenMP

 Set of compiler directives and an

API for C, C++, FORTRAN

 Provides support for parallel

programming in shared-memory

environments

 Identifies parallel regions –

blocks of code that can run in

parallel

#pragma omp parallel

Create as many threads as there are

cores

#pragma omp parallel for

for(i=0;i<N;i++) {

 c[i] = a[i] + b[i];

}

Run for loop in parallel

4.31 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Grand Central Dispatch

 Apple technology for Mac OS X and iOS operating systems

 Extensions to C, C++ languages, API, and run-time library

 Allows identification of parallel sections

 Manages most of the details of threading

 Block is in “^{ }” - ˆ{ printf("I am a block"); }

 Blocks placed in dispatch queue

 Assigned to available thread in thread pool when removed

from queue

4.32 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Grand Central Dispatch

 Two types of dispatch queues:

 serial – blocks removed in FIFO order, queue is per process,

called main queue

 Programmers can create additional serial queues within

program

 concurrent – removed in FIFO order but several may be

removed at a time

 Three system wide queues with priorities low, default, high

4.33 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Threading Issues

 Semantics of fork() and exec() system calls

 Signal handling

 Synchronous and asynchronous

 Thread cancellation of target thread

 Asynchronous or deferred

 Thread-local storage

 Scheduler Activations

4.34 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Semantics of fork() and exec()

 Does fork()duplicate only the calling thread or all

threads?

 Some UNIXes have two versions of fork

 exec() usually works as normal – replace the running

process including all threads

4.35 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Signal Handling

 Signals are used in UNIX systems to notify a process that a

particular event has occurred.

 A signal handler is used to process signals

1. Signal is generated by particular event

2. Signal is delivered to a process

3. Signal is handled by one of two signal handlers:

1. default

2. user-defined

 Every signal has default handler that kernel runs when

handling signal

 User-defined signal handler can override default

 For single-threaded, signal delivered to process

4.36 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Signal Handling (Cont.)

 Where should a signal be delivered for multi-threaded?

 Deliver the signal to the thread to which the signal

applies

 Deliver the signal to every thread in the process

 Deliver the signal to certain threads in the process

 Assign a specific thread to receive all signals for the

process

4.37 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Thread Cancellation

 Terminating a thread before it has finished

 Thread to be canceled is target thread

 Two general approaches:

 Asynchronous cancellation terminates the target thread

immediately

 Deferred cancellation allows the target thread to periodically

check if it should be cancelled

 Pthread code to create and cancel a thread:

4.38 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Thread Cancellation (Cont.)

 Invoking thread cancellation requests cancellation, but actual

cancellation depends on thread state

 If thread has cancellation disabled, cancellation remains pending

until thread enables it

 Default type is deferred

 Cancellation only occurs when thread reaches cancellation

point

 I.e. pthread_testcancel()

 Then cleanup handler is invoked

 On Linux systems, thread cancellation is handled through signals

4.39 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Thread-Local Storage

 Thread-local storage (TLS) allows each thread to have its

own copy of data

 Useful when you do not have control over the thread creation

process (i.e., when using a thread pool)

 Different from local variables

 Local variables visible only during single function

invocation

 TLS visible across function invocations

 Similar to static data

 TLS is unique to each thread

4.40 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Scheduler Activations

 Both M:M and Two-level models require

communication to maintain the appropriate

number of kernel threads allocated to the

application

 Typically use an intermediate data structure

between user and kernel threads – lightweight

process (LWP)

 Appears to be a virtual processor on which

process can schedule user thread to run

 Each LWP attached to kernel thread

 How many LWPs to create?

 Scheduler activations provide upcalls - a

communication mechanism from the kernel to

the upcall handler in the thread library

 This communication allows an application to

maintain the correct number kernel threads

4.41 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Operating System Examples

 Windows Threads

 Linux Threads

4.42 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Windows Threads

 Windows implements the Windows API – primary API for Win

98, Win NT, Win 2000, Win XP, and Win 7

 Implements the one-to-one mapping, kernel-level

 Each thread contains

 A thread id

 Register set representing state of processor

 Separate user and kernel stacks for when thread runs in

user mode or kernel mode

 Private data storage area used by run-time libraries and

dynamic link libraries (DLLs)

 The register set, stacks, and private storage area are known as

the context of the thread

4.43 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Windows Threads (Cont.)

 The primary data structures of a thread include:

 ETHREAD (executive thread block) – includes pointer to

process to which thread belongs and to KTHREAD, in

kernel space

 KTHREAD (kernel thread block) – scheduling and

synchronization info, kernel-mode stack, pointer to TEB, in

kernel space

 TEB (thread environment block) – thread id, user-mode

stack, thread-local storage, in user space

4.44 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Windows Threads Data Structures

4.45 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Linux Threads

 Linux refers to them as tasks rather than threads

 Thread creation is done through clone() system call

 clone() allows a child task to share the address space of the

parent task (process)

 Flags control behavior

 struct task_struct points to process data structures

(shared or unique)

Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Chapter 5: Process
Synchronization

5.2 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Chapter 5: Process Synchronization

 Background
 The Critical-Section Problem
 Peterson’s Solution
 Synchronization Hardware
 Mutex Locks
 Semaphores
 Classic Problems of Synchronization
 Monitors
 Synchronization Examples
 Alternative Approaches

5.4 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Background

 Processes can execute concurrently
 May be interrupted at any time, partially completing

execution
 Concurrent access to shared data may result in data

inconsistency
 Maintaining data consistency requires mechanisms to ensure

the orderly execution of cooperating processes
 Illustration of the problem:

Suppose that we wanted to provide a solution to the
consumer-producer problem that fills all the buffers. We can
do so by having an integer counter that keeps track of the
number of full buffers. Initially, counter is set to 0. It is
incremented by the producer after it produces a new buffer
and is decremented by the consumer after it consumes a
buffer.

5.5 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Producer

while (true) {
/* produce an item in next produced */

while (counter == BUFFER_SIZE) ;

/* do nothing */

buffer[in] = next_produced;

in = (in + 1) % BUFFER_SIZE;

counter++;

}

5.6 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Consumer

while (true) {

while (counter == 0)

; /* do nothing */

next_consumed = buffer[out];

out = (out + 1) % BUFFER_SIZE;

counter--;

/* consume the item in next consumed */

}

5.7 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Race Condition

 counter++ could be implemented as

register1 = counter
register1 = register1 + 1
counter = register1

 counter-- could be implemented as

register2 = counter
register2 = register2 - 1
counter = register2

 Consider this execution interleaving with “count = 5” initially:
S0: producer execute register1 = counter {register1 = 5}
S1: producer execute register1 = register1 + 1 {register1 = 6}
S2: consumer execute register2 = counter {register2 = 5}
S3: consumer execute register2 = register2 – 1 {register2 = 4}
S4: producer execute counter = register1 {counter = 6 }
S5: consumer execute counter = register2 {counter = 4}

5.8 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Critical Section Problem

 Consider system of n processes {p0, p1, … pn-1}
 Each process has critical section segment of code

 Process may be changing common variables, updating
table, writing file, etc

 When one process in critical section, no other may be in its
critical section

 Critical section problem is to design protocol to solve this
problem

 Each process must ask permission to enter critical section in
entry section, may follow critical section with exit section,
then remainder section

5.9 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Critical Section

 General structure of process Pi

5.10 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Solution to Critical-Section Problem

1. Mutual Exclusion - If process Pi is executing in its critical
section, then no other processes can be executing in their
critical sections

2. Progress - If no process is executing in its critical section and
there exist some processes that wish to enter their critical
section, then the selection of the processes that will enter the
critical section next cannot be postponed indefinitely

3. Bounded Waiting - A bound must exist on the number of
times that other processes are allowed to enter their critical
sections after a process has made a request to enter its critical
section and before that request is granted
 Assume that each process executes at a nonzero speed
 No assumption concerning relative speed of the n

processes

5.11 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Critical-Section Handling in OS

Two approaches depending on if kernel is preemptive or non-
preemptive
 Preemptive – allows preemption of process when running

in kernel mode
 Non-preemptive – runs until exits kernel mode, blocks, or

voluntarily yields CPU
Essentially free of race conditions in kernel mode

5.12 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Peterson’s Solution

 Good algorithmic description of solving the problem
 Two process solution
 Assume that the load and store machine-language

instructions are atomic; that is, cannot be interrupted
 The two processes share two variables:

 int turn;

 Boolean flag[2]

 The variable turn indicates whose turn it is to enter the critical
section

 The flag array is used to indicate if a process is ready to enter
the critical section. flag[i] = true implies that process Pi is
ready!

5.13 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Algorithm for Process Pi

do {
flag[i] = true;

turn = j;

while (flag[j] && turn = = j);

critical section

flag[i] = false;

remainder section

} while (true);

5.14 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Peterson’s Solution (Cont.)

 Provable that the three CS requirement are met:
1. Mutual exclusion is preserved

Pi enters CS only if:

either flag[j] = false or turn = i

Pj enters CS only if:

either flag[i] = false or turn = j

2. Progress requirement is satisfied
3. Bounded-waiting requirement is met

5.15 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Synchronization Hardware

 Many systems provide hardware support for implementing the
critical section code.

 All solutions below based on idea of locking
 Protecting critical regions via locks

 Uniprocessors – could disable interrupts
 Currently running code would execute without preemption
 Generally too inefficient on multiprocessor systems

 Operating systems using this not broadly scalable
 Modern machines provide special atomic hardware instructions

 Atomic = non-interruptible
 Either test memory word and set value
 Or swap contents of two memory words

5.16 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Solution to Critical-section Problem Using Locks

do {

acquire lock

critical section

release lock

remainder section

} while (TRUE);

5.17 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

test_and_set Instruction

Definition:
boolean test_and_set (boolean *target)

{

boolean rv = *target;

*target = TRUE;

return rv:

}

1. Executed atomically
2. Returns the original value of passed parameter
3. Set the new value of passed parameter to “TRUE”.

5.18 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Solution using test_and_set()

 Shared Boolean variable lock, initialized to FALSE
 Solution:

do {
while (test_and_set(&lock))

; /* do nothing */

/* critical section */

lock = false;

/* remainder section */

} while (true);

5.19 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

compare_and_swap Instruction

Definition:
int compare_and_swap(int *value, int expected, int new_value) {

int temp = *value;

if (*value == expected)

*value = new_value;

return temp;

}

1. Executed atomically
2. Returns the original value of passed parameter “value”
3. Set the variable “value” the value of the passed parameter “new_value”

but only if “value” ==“expected”. That is, the swap takes place only under
this condition.

5.20 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Solution using compare_and_swap

 Shared integer “lock” initialized to 0;
 Solution:

do {
while (compare_and_swap(&lock, 0, 1) != 0)

; /* do nothing */

/* critical section */

lock = 0;

/* remainder section */

} while (true);

5.21 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Mutex Locks

 Previous solutions are complicated and generally inaccessible
to application programmers

 OS designers build software tools to solve critical section
problem

 Simplest is mutex lock
 Protect a critical section by first acquire() a lock then

release() the lock
 Boolean variable indicating if lock is available or not

 Calls to acquire() and release() must be atomic
 Usually implemented via hardware atomic instructions

 But this solution requires busy waiting
 This lock therefore called a spinlock

5.22 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

acquire() and release()

 acquire() {
while (!available)

; /* busy wait */

available = false;

}

 release() {

available = true;

}

 do {

acquire lock

critical section

release lock

remainder section

} while (true);

5.23 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Semaphore

 Synchronization tool that provides more sophisticated ways (than Mutex locks)
for process to synchronize their activities.

 Semaphore S – integer variable
 Can only be accessed via two indivisible (atomic) operations

 wait() and signal()

 Originally called P() and V()

 Definition of the wait() operation

wait(S) {

while (S <= 0)

; // busy wait

S--;

}

 Definition of the signal() operation

signal(S) {

S++;

}

5.24 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Semaphore Usage

 Counting semaphore – integer value can range over an unrestricted
domain

 Binary semaphore – integer value can range only between 0 and 1
 Same as a mutex lock

 Can solve various synchronization problems
 Consider P1 and P2 that require S1 to happen before S2

Create a semaphore “synch” initialized to 0
P1:

S1;

signal(synch);

P2:

wait(synch);

S2;

 Can implement a counting semaphore S as a binary semaphore

5.25 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Semaphore Implementation

 Must guarantee that no two processes can execute the wait()
and signal() on the same semaphore at the same time

 Thus, the implementation becomes the critical section problem
where the wait and signal code are placed in the critical
section
 Could now have busy waiting in critical section

implementation
 But implementation code is short
 Little busy waiting if critical section rarely occupied

5.26 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Semaphore Implementation with no Busy waiting

 With each semaphore there is an associated waiting queue
 Each entry in a waiting queue has two data items:

 value (of type integer)
 pointer to next record in the list

 Two operations:
 block – place the process invoking the operation on the

appropriate waiting queue
 wakeup – remove one of processes in the waiting queue

and place it in the ready queue
 typedef struct{

int value;

struct process *list;

} semaphore;

5.27 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Implementation with no Busy waiting (Cont.)

wait(semaphore *S) {

S->value--;

if (S->value < 0) {
add this process to S->list;

block();

}

}

signal(semaphore *S) {

S->value++;

if (S->value <= 0) {
remove a process P from S->list;

wakeup(P);

}

}

5.28 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Deadlock and Starvation

 Deadlock – two or more processes are waiting indefinitely for an
event that can be caused by only one of the waiting processes

 Let S and Q be two semaphores initialized to 1
P0 P1

wait(S); wait(Q);

wait(Q); wait(S);

... ...

signal(S); signal(Q);

signal(Q); signal(S);

 Starvation – indefinite blocking
 A process may never be removed from the semaphore queue in which it is

suspended
 Priority Inversion – Scheduling problem when lower-priority process

holds a lock needed by higher-priority process
 Solved via priority-inheritance protocol

5.29 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Classical Problems of Synchronization

 Classical problems used to test newly-proposed synchronization
schemes
 Bounded-Buffer Problem
 Readers and Writers Problem
 Dining-Philosophers Problem

5.30 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Bounded-Buffer Problem

 n buffers, each can hold one item

 Semaphore mutex initialized to the value 1

 Semaphore full initialized to the value 0

 Semaphore empty initialized to the value n

5.31 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Bounded Buffer Problem (Cont.)

 The structure of the producer process

do {

...
/* produce an item in next_produced */

...

wait(empty);

wait(mutex);

...
/* add next produced to the buffer */

...

signal(mutex);

signal(full);

} while (true);

5.32 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Bounded Buffer Problem (Cont.)

 The structure of the consumer process

Do {

wait(full);

wait(mutex);

...
/* remove an item from buffer to next_consumed */

...

signal(mutex);

signal(empty);

...
/* consume the item in next consumed */

...
} while (true);

5.33 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Readers-Writers Problem

 A data set is shared among a number of concurrent processes
 Readers – only read the data set; they do not perform any updates
 Writers – can both read and write

 Problem – allow multiple readers to read at the same time
 Only one single writer can access the shared data at the same time

 Several variations of how readers and writers are considered – all
involve some form of priorities

 Shared Data
 Data set

 Semaphore rw_mutex initialized to 1

 Semaphore mutex initialized to 1

 Integer read_count initialized to 0

5.34 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Readers-Writers Problem (Cont.)

 The structure of a writer process

do {
wait(rw_mutex);

...
/* writing is performed */

...

signal(rw_mutex);

} while (true);

5.35 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Readers-Writers Problem (Cont.)
 The structure of a reader process

do {
wait(mutex);
read_count++;
if (read_count == 1)

wait(rw_mutex);

signal(mutex);

...
/* reading is performed */

...

wait(mutex);
read count--;
if (read_count == 0)

signal(rw_mutex);

signal(mutex);

} while (true);

5.36 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Dining-Philosophers Problem

 Philosophers spend their lives alternating thinking and eating
 Don’t interact with their neighbors, occasionally try to pick up 2

chopsticks (one at a time) to eat from bowl
 Need both to eat, then release both when done

 In the case of 5 philosophers
 Shared data

 Bowl of rice (data set)
 Semaphore chopstick [5] initialized to 1

5.37 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Dining-Philosophers Problem Algorithm

 The structure of Philosopher i:
do {

wait (chopstick[i]);

wait (chopStick[(i + 1) % 5]);

// eat

signal (chopstick[i]);

signal (chopstick[(i + 1) % 5]);

// think

} while (TRUE);

 What is the problem with this algorithm?

5.38 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Dining-Philosophers Problem Algorithm (Cont.)

 Deadlock handling
 Allow at most 4 philosophers to be sitting

simultaneously at the table.
 Allow a philosopher to pick up the forks only if both

are available (picking must be done in a critical
section.

 Use an asymmetric solution -- an odd-numbered
philosopher picks up first the left chopstick and then
the right chopstick. Even-numbered philosopher picks
up first the right chopstick and then the left chopstick.

5.39 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Problems with Semaphores

 Incorrect use of semaphore operations:

 signal (mutex) …. wait (mutex)

 wait (mutex) … wait (mutex)

 Omitting of wait (mutex) or signal (mutex) (or both)

 Deadlock and starvation are possible.

5.40 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Monitors

 A high-level abstraction that provides a convenient and effective
mechanism for process synchronization

 Abstract data type, internal variables only accessible by code within the
procedure

 Only one process may be active within the monitor at a time
 But not powerful enough to model some synchronization schemes

monitor monitor-name
{
// shared variable declarations
procedure P1 (…) { …. }

procedure Pn (…) {……}

Initialization code (…) { … }
}

}

5.41 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Schematic view of a Monitor

5.42 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Condition Variables

 condition x, y;

 Two operations are allowed on a condition variable:

 x.wait() – a process that invokes the operation is
suspended until x.signal()

 x.signal() – resumes one of processes (if any) that
invoked x.wait()

 If no x.wait() on the variable, then it has no effect on
the variable

5.43 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Monitor with Condition Variables

5.44 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Condition Variables Choices

 If process P invokes x.signal(), and process Q is suspended in
x.wait(), what should happen next?

 Both Q and P cannot execute in paralel. If Q is resumed, then P
must wait

 Options include
 Signal and wait – P waits until Q either leaves the monitor or it

waits for another condition
 Signal and continue – Q waits until P either leaves the monitor or it

waits for another condition
 Both have pros and cons – language implementer can decide
 Monitors implemented in Concurrent Pascal compromise

 P executing signal immediately leaves the monitor, Q is
resumed

 Implemented in other languages including Mesa, C#, Java

5.45 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Monitor Solution to Dining Philosophers
monitor DiningPhilosophers
{

enum { THINKING; HUNGRY, EATING) state [5] ;
condition self [5];

void pickup (int i) {
state[i] = HUNGRY;
test(i);
if (state[i] != EATING) self[i].wait;

}

void putdown (int i) {
state[i] = THINKING;

// test left and right neighbors
test((i + 4) % 5);
test((i + 1) % 5);

}

5.46 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Solution to Dining Philosophers (Cont.)

void test (int i) {
if ((state[(i + 4) % 5] != EATING) &&
(state[i] == HUNGRY) &&
(state[(i + 1) % 5] != EATING)) {

state[i] = EATING ;
self[i].signal () ;
}

}

initialization_code() {
for (int i = 0; i < 5; i++)
state[i] = THINKING;

}
}

5.47 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

 Each philosopher i invokes the operations pickup() and
putdown() in the following sequence:

DiningPhilosophers.pickup(i);

EAT

DiningPhilosophers.putdown(i);

 No deadlock, but starvation is possible

Solution to Dining Philosophers (Cont.)

5.48 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Monitor Implementation Using Semaphores

 Variables

semaphore mutex; // (initially = 1)
semaphore next; // (initially = 0)
int next_count = 0;

 Each procedure F will be replaced by

wait(mutex);
…

body of F;
…

if (next_count > 0)
signal(next)

else
signal(mutex);

 Mutual exclusion within a monitor is ensured

5.49 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Monitor Implementation – Condition Variables

 For each condition variable x, we have:

semaphore x_sem; // (initially = 0)
int x_count = 0;

 The operation x.wait can be implemented as:

x_count++;
if (next_count > 0)

signal(next);
else

signal(mutex);
wait(x_sem);
x_count--;

5.50 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Monitor Implementation (Cont.)

 The operation x.signal can be implemented as:

if (x_count > 0) {
next_count++;
signal(x_sem);
wait(next);
next_count--;

}

5.51 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Resuming Processes within a Monitor

 If several processes queued on condition x, and x.signal()
executed, which should be resumed?

 FCFS frequently not adequate
 conditional-wait construct of the form x.wait(c)

 Where c is priority number
 Process with lowest number (highest priority) is

scheduled next

5.52 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

 Allocate a single resource among competing processes using
priority numbers that specify the maximum time a process
plans to use the resource

R.acquire(t);
...

access the resurce;
...

R.release;

 Where R is an instance of type ResourceAllocator

Single Resource allocation

5.53 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

A Monitor to Allocate Single Resource
monitor ResourceAllocator
{

boolean busy;
condition x;
void acquire(int time) {

if (busy)
x.wait(time);

busy = TRUE;
}
void release() {

busy = FALSE;
x.signal();

}
initialization code() {

busy = FALSE;
}

}

5.54 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Synchronization Examples

 Solaris
 Windows
 Linux
 Pthreads

5.55 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Solaris Synchronization

 Implements a variety of locks to support multitasking, multithreading
(including real-time threads), and multiprocessing

 Uses adaptive mutexes for efficiency when protecting data from short
code segments
 Starts as a standard semaphore spin-lock
 If lock held, and by a thread running on another CPU, spins
 If lock held by non-run-state thread, block and sleep waiting for signal of

lock being released

 Uses condition variables
 Uses readers-writers locks when longer sections of code need

access to data
 Uses turnstiles to order the list of threads waiting to acquire either an

adaptive mutex or reader-writer lock
 Turnstiles are per-lock-holding-thread, not per-object

 Priority-inheritance per-turnstile gives the running thread the highest of
the priorities of the threads in its turnstile

5.56 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Windows Synchronization

 Uses interrupt masks to protect access to global resources on
uniprocessor systems

 Uses spinlocks on multiprocessor systems
 Spinlocking-thread will never be preempted

 Also provides dispatcher objects user-land which may act
mutexes, semaphores, events, and timers
 Events

 An event acts much like a condition variable
 Timers notify one or more thread when time expired
 Dispatcher objects either signaled-state (object available)

or non-signaled state (thread will block)

5.57 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Linux Synchronization

 Linux:
 Prior to kernel Version 2.6, disables interrupts to

implement short critical sections
 Version 2.6 and later, fully preemptive

 Linux provides:
 Semaphores
 atomic integers
 spinlocks
 reader-writer versions of both

 On single-cpu system, spinlocks replaced by enabling and
disabling kernel preemption

5.58 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Pthreads Synchronization

 Pthreads API is OS-independent
 It provides:

 mutex locks
 condition variable

 Non-portable extensions include:
 read-write locks
 spinlocks

5.59 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Alternative Approaches

 Transactional Memory

 OpenMP

 Functional Programming Languages

5.60 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

 A memory transaction is a sequence of read-write operations
to memory that are performed atomically.

void update()
{

/* read/write memory */
}

Transactional Memory

5.61 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

 OpenMP is a set of compiler directives and API that support
parallel progamming.

void update(int value)
{

#pragma omp critical
{

count += value
}

}

The code contained within the #pragma omp critical directive
is treated as a critical section and performed atomically.

OpenMP

5.62 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

 Functional programming languages offer a different paradigm
than procedural languages in that they do not maintain state.

 Variables are treated as immutable and cannot change state
once they have been assigned a value.

 There is increasing interest in functional languages such as
Erlang and Scala for their approach in handling data races.

Functional Programming Languages

Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Chapter 6: CPU Scheduling

6.2 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Chapter 6: CPU Scheduling

 Basic Concepts

 Scheduling Criteria

 Scheduling Algorithms

 Thread Scheduling

 Multiple-Processor Scheduling

 Real-Time CPU Scheduling

 Operating Systems Examples

 Algorithm Evaluation

6.4 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Basic Concepts

 Maximum CPU utilization

obtained with multiprogramming

 CPU–I/O Burst Cycle – Process

execution consists of a cycle of

CPU execution and I/O wait

 CPU burst followed by I/O burst

 CPU burst distribution is of main

concern

6.5 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Histogram of CPU-burst Times

6.6 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

CPU Scheduler

 Short-term scheduler selects from among the processes in

ready queue, and allocates the CPU to one of them

 Queue may be ordered in various ways

 CPU scheduling decisions may take place when a process:

1. Switches from running to waiting state

2. Switches from running to ready state

3. Switches from waiting to ready

4. Terminates

 Scheduling under 1 and 4 is nonpreemptive

 All other scheduling is preemptive

 Consider access to shared data

 Consider preemption while in kernel mode

 Consider interrupts occurring during crucial OS activities

6.7 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Dispatcher

 Dispatcher module gives control of the CPU to the process

selected by the short-term scheduler; this involves:

 switching context

 switching to user mode

 jumping to the proper location in the user program to

restart that program

 Dispatch latency – time it takes for the dispatcher to stop

one process and start another running

6.8 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Scheduling Criteria

 CPU utilization – keep the CPU as busy as possible

 Throughput – # of processes that complete their execution per

time unit

 Turnaround time – amount of time to execute a particular

process

 Waiting time – amount of time a process has been waiting in the

ready queue

 Response time – amount of time it takes from when a request

was submitted until the first response is produced, not output (for

time-sharing environment)

6.9 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Scheduling Algorithm Optimization Criteria

 Max CPU utilization

 Max throughput

 Min turnaround time

 Min waiting time

 Min response time

6.10 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

First- Come, First-Served (FCFS) Scheduling

 Process Burst Time

 P1 24

 P2 3

 P3 3

 Suppose that the processes arrive in the order: P1 , P2 , P3

The Gantt Chart for the schedule is:

 Waiting time for P1 = 0; P2 = 24; P3 = 27

 Average waiting time: (0 + 24 + 27)/3 = 17

P P P
1 2 3

0 24 3027

6.11 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

FCFS Scheduling (Cont.)

Suppose that the processes arrive in the order:

 P2 , P3 , P1

 The Gantt chart for the schedule is:

 Waiting time for P1 = 6; P2 = 0; P3 = 3

 Average waiting time: (6 + 0 + 3)/3 = 3

 Much better than previous case

 Convoy effect - short process behind long process

 Consider one CPU-bound and many I/O-bound processes

P
1

0 3 6 30

P
2

P
3

6.12 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Shortest-Job-First (SJF) Scheduling

 Associate with each process the length of its next CPU burst

 Use these lengths to schedule the process with the shortest

time

 SJF is optimal – gives minimum average waiting time for a given

set of processes

 The difficulty is knowing the length of the next CPU request

 Could ask the user

6.13 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Example of SJF

 ProcessArrival Time Burst Time

 P1 0.0 6

 P2 2.0 8

 P3 4.0 7

 P4 5.0 3

 SJF scheduling chart

 Average waiting time = (3 + 16 + 9 + 0) / 4 = 7

P
3

0 3 24

P
4

P
1

169

P
2

6.14 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Determining Length of Next CPU Burst

 Can only estimate the length – should be similar to the previous one

 Then pick process with shortest predicted next CPU burst

 Can be done by using the length of previous CPU bursts, using

exponential averaging

 Commonly, α set to ½

 Preemptive version called shortest-remaining-time-first

:Define 4.

10 , 3.

burst CPU next the for value predicted 2.

burst CPU of length actual 1.











 1n

th
n nt

  .1
1 nnn

t  


6.15 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Prediction of the Length of the Next CPU Burst

6.16 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Examples of Exponential Averaging

  =0

 n+1 = n

 Recent history does not count

  =1

 n+1 =  tn

 Only the actual last CPU burst counts

 If we expand the formula, we get:

n+1 =  tn+(1 - ) tn -1 + …

 +(1 - )j  tn -j + …

 +(1 - )n +1 0

 Since both  and (1 - ) are less than or equal to 1, each
successive term has less weight than its predecessor

6.17 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Example of Shortest-remaining-time-first

 Now we add the concepts of varying arrival times and preemption to

the analysis

 ProcessAarri Arrival TimeT Burst Time

 P1 0 8

 P2 1 4

 P3 2 9

 P4 3 5

 Preemptive SJF Gantt Chart

 Average waiting time = [(10-1)+(1-1)+(17-2)+5-3)]/4 = 26/4 = 6.5

msec

P
4

0 1 26

P
1

P
2

10

P
3

P
1

5 17

6.18 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Priority Scheduling

 A priority number (integer) is associated with each process

 The CPU is allocated to the process with the highest priority

(smallest integer  highest priority)

 Preemptive

 Nonpreemptive

 SJF is priority scheduling where priority is the inverse of predicted

next CPU burst time

 Problem  Starvation – low priority processes may never execute

 Solution  Aging – as time progresses increase the priority of the

process

6.19 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Example of Priority Scheduling

 ProcessA arri Burst TimeT Priority

 P1 10 3

 P2 1 1

 P3 2 4

 P4 1 5

 P5 5 2

 Priority scheduling Gantt Chart

 Average waiting time = 8.2 msec

1

0 1 19

P
1

P
2

16

P
4

P
3

6 18

P

6.20 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Round Robin (RR)

 Each process gets a small unit of CPU time (time quantum q),

usually 10-100 milliseconds. After this time has elapsed, the

process is preempted and added to the end of the ready queue.

 If there are n processes in the ready queue and the time

quantum is q, then each process gets 1/n of the CPU time in

chunks of at most q time units at once. No process waits more

than (n-1)q time units.

 Timer interrupts every quantum to schedule next process

 Performance

 q large  FIFO

 q small  q must be large with respect to context switch,

otherwise overhead is too high

6.21 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Example of RR with Time Quantum = 4

 Process Burst Time

 P1 24

 P2 3

 P3 3

 The Gantt chart is:

 Typically, higher average turnaround than SJF, but better
response

 q should be large compared to context switch time

 q usually 10ms to 100ms, context switch < 10 usec

P P P
1 1 1

0 18 3026144 7 10 22

P
2

P
3

P
1

P
1

P
1

6.22 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Time Quantum and Context Switch Time

6.23 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Turnaround Time Varies With The Time Quantum

80% of CPU bursts
should be shorter than q

6.24 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Multilevel Queue

 Ready queue is partitioned into separate queues, eg:

 foreground (interactive)

 background (batch)

 Process permanently in a given queue

 Each queue has its own scheduling algorithm:

 foreground – RR

 background – FCFS

 Scheduling must be done between the queues:

 Fixed priority scheduling; (i.e., serve all from foreground then

from background). Possibility of starvation.

 Time slice – each queue gets a certain amount of CPU time

which it can schedule amongst its processes; i.e., 80% to

foreground in RR

 20% to background in FCFS

6.25 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Multilevel Queue Scheduling

6.26 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Multilevel Feedback Queue

 A process can move between the various queues; aging can be

implemented this way

 Multilevel-feedback-queue scheduler defined by the following

parameters:

 number of queues

 scheduling algorithms for each queue

 method used to determine when to upgrade a process

 method used to determine when to demote a process

 method used to determine which queue a process will enter

when that process needs service

6.27 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Example of Multilevel Feedback Queue

 Three queues:

 Q0 – RR with time quantum 8

milliseconds

 Q1 – RR time quantum 16 milliseconds

 Q2 – FCFS

 Scheduling

 A new job enters queue Q0 which is

served FCFS

 When it gains CPU, job receives 8

milliseconds

 If it does not finish in 8

milliseconds, job is moved to

queue Q1

 At Q1 job is again served FCFS and

receives 16 additional milliseconds

 If it still does not complete, it is

preempted and moved to queue Q2

6.28 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Thread Scheduling

 Distinction between user-level and kernel-level threads

 When threads supported, threads scheduled, not processes

 Many-to-one and many-to-many models, thread library schedules

user-level threads to run on LWP

 Known as process-contention scope (PCS) since scheduling

competition is within the process

 Typically done via priority set by programmer

 Kernel thread scheduled onto available CPU is system-contention

scope (SCS) – competition among all threads in system

6.29 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Pthread Scheduling

 API allows specifying either PCS or SCS during thread creation

 PTHREAD_SCOPE_PROCESS schedules threads using

PCS scheduling

 PTHREAD_SCOPE_SYSTEM schedules threads using

SCS scheduling

 Can be limited by OS – Linux and Mac OS X only allow

PTHREAD_SCOPE_SYSTEM

6.30 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Pthread Scheduling API
#include <pthread.h>

#include <stdio.h>

#define NUM_THREADS 5

int main(int argc, char *argv[]) {

 int i, scope;

 pthread_t tid[NUM THREADS];

 pthread_attr_t attr;

 /* get the default attributes */

 pthread_attr_init(&attr);

 /* first inquire on the current scope */

 if (pthread_attr_getscope(&attr, &scope) != 0)

 fprintf(stderr, "Unable to get scheduling scope\n");

 else {

 if (scope == PTHREAD_SCOPE_PROCESS)

 printf("PTHREAD_SCOPE_PROCESS");

 else if (scope == PTHREAD_SCOPE_SYSTEM)

 printf("PTHREAD_SCOPE_SYSTEM");

 else

 fprintf(stderr, "Illegal scope value.\n");

 }

6.31 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Pthread Scheduling API

 /* set the scheduling algorithm to PCS or SCS */

 pthread_attr_setscope(&attr, PTHREAD_SCOPE_SYSTEM);

 /* create the threads */

 for (i = 0; i < NUM_THREADS; i++)

 pthread_create(&tid[i],&attr,runner,NULL);

 /* now join on each thread */

 for (i = 0; i < NUM_THREADS; i++)

 pthread_join(tid[i], NULL);

}

/* Each thread will begin control in this function */

void *runner(void *param)

{

 /* do some work ... */

 pthread_exit(0);

}

6.32 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Multiple-Processor Scheduling

 CPU scheduling more complex when multiple CPUs are

available

 Homogeneous processors within a multiprocessor

 Asymmetric multiprocessing – only one processor accesses

the system data structures, alleviating the need for data sharing

 Symmetric multiprocessing (SMP) – each processor is self-

scheduling, all processes in common ready queue, or each has

its own private queue of ready processes

 Currently, most common

 Processor affinity – process has affinity for processor on which

it is currently running

 soft affinity

 hard affinity

 Variations including processor sets

6.33 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

NUMA and CPU Scheduling

Note that memory-placement algorithms can also consider affinity

6.34 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Multiple-Processor Scheduling – Load Balancing

 If SMP, need to keep all CPUs loaded for efficiency

 Load balancing attempts to keep workload evenly distributed

 Push migration – periodic task checks load on each processor,

and if found pushes task from overloaded CPU to other CPUs

 Pull migration – idle processors pulls waiting task from busy

processor

6.35 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Multicore Processors

 Recent trend to place multiple processor cores on same

physical chip

 Faster and consumes less power

 Multiple threads per core also growing

 Takes advantage of memory stall to make progress on

another thread while memory retrieve happens

6.36 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Multithreaded Multicore System

6.37 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Real-Time CPU Scheduling

 Can present obvious

challenges

 Soft real-time systems – no

guarantee as to when critical

real-time process will be

scheduled

 Hard real-time systems –

task must be serviced by its

deadline

 Two types of latencies affect

performance

1. Interrupt latency – time from

arrival of interrupt to start of

routine that services interrupt

2. Dispatch latency – time for

schedule to take current process

off CPU and switch to another

6.38 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Real-Time CPU Scheduling (Cont.)

 Conflict phase of

dispatch latency:

1. Preemption of

any process

running in kernel

mode

2. Release by low-

priority process

of resources

needed by high-

priority

processes

6.39 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Priority-based Scheduling

 For real-time scheduling, scheduler must support preemptive, priority-

based scheduling

 But only guarantees soft real-time

 For hard real-time must also provide ability to meet deadlines

 Processes have new characteristics: periodic ones require CPU at

constant intervals

 Has processing time t, deadline d, period p

 0 ≤ t ≤ d ≤ p

 Rate of periodic task is 1/p

6.40 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Virtualization and Scheduling

 Virtualization software schedules multiple guests onto

CPU(s)

 Each guest doing its own scheduling

 Not knowing it doesn’t own the CPUs

 Can result in poor response time

 Can effect time-of-day clocks in guests

 Can undo good scheduling algorithm efforts of guests

