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Process Concept

 An operating system executes a variety of programs:
 Batch system – jobs
 Time-shared systems – user programs or tasks

 Textbook uses the terms job and process almost interchangeably
 Process – a program in execution; process execution must 

progress in sequential fashion
 Multiple parts

 The program code, also called text section
 Current activity including program counter, processor 

registers
 Stack containing temporary data

 Function parameters, return addresses, local variables
 Data section containing global variables
 Heap containing memory dynamically allocated during run time
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Process Concept (Cont.)

 Program is passive entity stored on disk (executable file), 
process is active 
 Program becomes process when executable file loaded into 

memory
 Execution of program started via GUI mouse clicks, command 

line entry of its name, etc
 One program can be several processes

 Consider multiple users executing the same program
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Process in Memory
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Process State

 As a process executes, it changes state
 new:  The process is being created
 running:  Instructions are being executed
 waiting:  The process is waiting for some event to occur
 ready:  The process is waiting to be assigned to a processor
 terminated:  The process has finished execution
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Diagram of Process State
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Process Control Block (PCB)

Information associated with each process 
(also called task control block)
 Process state – running, waiting, etc
 Program counter – location of 

instruction to next execute
 CPU registers – contents of all process-

centric registers
 CPU scheduling information- priorities, 

scheduling queue pointers
 Memory-management information –

memory allocated to the process
 Accounting information – CPU used, 

clock time elapsed since start, time 
limits

 I/O status information – I/O devices 
allocated to process, list of open files
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CPU Switch From Process to Process
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Threads

 So far, process has a single thread of execution
 Consider having multiple program counters per process

 Multiple locations can execute at once
 Multiple threads of control -> threads

 Must then have storage for thread details, multiple program 
counters in PCB

 See next chapter
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Process Representation in Linux

Represented by the C structure task_struct

pid t_pid; /* process identifier */ 
long state; /* state of the process */ 
unsigned int time_slice /* scheduling information */ 
struct task_struct *parent; /* this process’s parent */ 
struct list_head children; /* this process’s children */ 
struct files_struct *files; /* list of open files */ 
struct mm_struct *mm; /* address space of this process */
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Process Scheduling

 Maximize CPU use, quickly switch processes onto CPU for 
time sharing

 Process scheduler selects among available processes for 
next execution on CPU

 Maintains scheduling queues of processes
 Job queue – set of all processes in the system
 Ready queue – set of all processes residing in main 

memory, ready and waiting to execute
 Device queues – set of processes waiting for an I/O device
 Processes migrate among the various queues



3.14 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Ready Queue And Various I/O Device Queues
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Representation of Process Scheduling

 Queueing diagram represents queues, resources, flows
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Schedulers

 Short-term scheduler  (or CPU scheduler) – selects which process should 
be executed next and allocates CPU
 Sometimes the only scheduler in a system
 Short-term scheduler is invoked frequently (milliseconds)  (must be 

fast)
 Long-term scheduler  (or job scheduler) – selects which processes should 

be brought into the ready queue
 Long-term scheduler is invoked  infrequently (seconds, minutes) 

(may be slow)
 The long-term scheduler controls the degree of multiprogramming

 Processes can be described as either:
 I/O-bound process – spends more time doing I/O than computations, 

many short CPU bursts
 CPU-bound process – spends more time doing computations; few very 

long CPU bursts
 Long-term scheduler strives for good process mix



3.17 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Addition of Medium Term Scheduling

 Medium-term scheduler  can be added if degree of multiple 
programming needs to decrease
 Remove process from memory, store on disk, bring back in 

from disk to continue execution: swapping
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Multitasking in Mobile Systems

 Some mobile systems (e.g., early version of iOS)  allow only one 
process to run, others suspended

 Due to screen real estate, user interface limits iOS provides for a 
 Single foreground process- controlled via user interface
 Multiple background processes– in memory, running, but not 

on the display, and with limits
 Limits include single, short task, receiving notification of events, 

specific long-running tasks like audio playback
 Android runs foreground and background, with fewer limits

 Background process uses a service to perform tasks
 Service can keep running even if background process is 

suspended
 Service has no user interface, small memory use
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Context Switch

 When CPU switches to another process, the system must save 
the state of the old process and load the saved state for the 
new process via a context switch

 Context of a process represented in the PCB
 Context-switch time is overhead; the system does no useful 

work while switching
 The more complex the OS and the PCB  the longer the 

context switch
 Time dependent on hardware support

 Some hardware provides multiple sets of registers per CPU 
 multiple contexts loaded at once
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Operations on Processes

 System must provide mechanisms for:
 process creation,
 process termination, 
 and so on as detailed next
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Process Creation

 Parent process create children processes, which, in turn 
create other processes, forming a tree of processes

 Generally, process identified and managed via a process 
identifier (pid)

 Resource sharing options
 Parent and children share all resources
 Children share subset of parent’s resources
 Parent and child share no resources

 Execution options
 Parent and children execute concurrently
 Parent waits until children terminate
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A Tree of Processes in Linux

init
pid = 1

sshd
pid = 3028

login
pid = 8415

kthreadd
pid = 2

sshd
pid = 3610

pdflush
pid = 200

khelper
pid = 6

tcsch
pid = 4005

emacs
pid = 9204

bash
pid = 8416

ps
pid = 9298

After system booted

Performing tasks on 
behalf of the kernel

Managing clients that 
connect to the 
system by using 
ssh

Managing clients that directly
log onto the system.
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Process Creation (Cont.)

 Address space
 Child duplicate of parent (has the same program as the 

parent)
 Child has a program loaded into it

 UNIX examples
 fork() system call creates new process. The new process 

consists of a copy of the address space of the original 
process.

 exec() system call used after a fork() to replace the 
process’ memory space with a new program

move itself off the ready queue until the termination of the child
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Representation of Process Scheduling

 Queueing diagram represents queues, resources, flows
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C Program Forking Separate Process

The only difference is 
that the value of pid for 
the child process is 
zero, while that for the 
parent is the actual pid 
of the child process.
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Process Termination

 Process executes last statement and then asks the operating 
system to delete it using the exit() system call.
 Returns  status data from child to parent (via wait())

 Process’ resources are deallocated by operating system
 Parent may terminate the execution of children processes  using 

the abort() system call.  Some reasons for doing so:

 Child has exceeded allocated resources
 Task assigned to child is no longer required
 The parent is exiting and the operating systems does not 

allow  a child to continue if its parent terminates
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Process Termination

 Some operating systems do not allow child to exist if its parent has 
terminated.  If a process terminates, then all its children must also 
be terminated.
 cascading termination.  All children, grandchildren, etc.  are  

terminated.
 The termination is initiated by the operating system.

 The parent process may wait for termination of a child process by 
using the wait()system call. The call returns status information 
and the pid of the terminated process

pid = wait(&status); 

 If no parent waiting (did not invoke wait()) process is a zombie
 Once the parent calls wait(), the process identifier of the 

zombie process and its entry in the process table are released.
 If parent terminated without invoking wait , process is an orphan

 Assigning the init process as the new parent, periodically 
invokes wait()
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Interprocess Communication

 Processes within a system may be independent or cooperating
 Cooperating process can affect or be affected by other processes, 

including sharing data
 Reasons for cooperating processes:

 Information sharing (shared files)
 Computation speedup (parallel subtasks)
 Modularity (system function divided into separate processes)
 Convenience

 Cooperating processes need interprocess communication (IPC)
 Two models of IPC

 Shared memory
 Message passing
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Communications Models 

(a) Message passing.  (b) shared memory. 



3.30 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Interprocess Communication – Shared Memory

 An area of memory shared among the processes that wish to 
communicate
 Typically, a shared-memory region resides in the address space of the 

process creating the shared-memory segment. Other processes that wish to 
communicate using this shared-memory segment must attach it to their 
address space.

 The communication is under the control of the users processes not the 
operating system.

 Major issues is to provide mechanism that will allow the user processes 
to synchronize their actions when they access shared memory. 

 Synchronization is discussed in great details in Chapter 5.
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Producer-Consumer Problem

 Paradigm for cooperating processes, producer process produces 
information that is consumed by a consumer process
 unbounded-buffer places no practical limit on the size of the buffer

 The consumer may have to wait for new items, but the producer 
can always produce new items.

 bounded-buffer assumes that there is a fixed buffer size
 The consumer must wait if the buffer is empty, and the producer 

must wait if the buffer is full.
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Bounded-Buffer – Shared-Memory Solution

 Shared data
#define BUFFER_SIZE 10

typedef struct {

. . .

} item;

item buffer[BUFFER_SIZE];

int in = 0;

int out = 0;
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Bounded-Buffer – Producer

item next_produced; 
while (true) { 

/* produce an item in next produced */ 
while (((in + 1) % BUFFER_SIZE) == out) 

; /* do nothing */ 
buffer[in] = next_produced; 
in = (in + 1) % BUFFER_SIZE; 

} 
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Bounded Buffer – Consumer

item next_consumed; 

while (true) {
while (in == out) 

; /* do nothing */
next_consumed = buffer[out]; 

out = (out + 1) % BUFFER_SIZE;

/* consume the item in next consumed */ 

} 

Solution is correct, but can only use BUFFER_SIZE-1 
elements. How to design a solution in which BUFFER 
SIZE items can be in the buffer at the same time?
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Interprocess Communication – Message Passing

 Mechanism for processes to communicate and to synchronize 
their actions

 Message system – processes communicate with each other 
without resorting to shared variables

 IPC facility provides two operations:
 send(message)
 receive(message)

 Particularly useful in a distributed environment
 The message size is either fixed or variable
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Message Passing (Cont.)

 If processes P and Q wish to communicate, they need to:
 Establish a communication link between them
 Exchange messages via send/receive

 Implementation issues:
 How are links established?
 Can a link be associated with more than two processes?
 How many links can there be between every pair of 

communicating processes?
 What is the capacity of a link?
 Is the size of a message that the link can accommodate fixed or 

variable?
 Is a link unidirectional or bi-directional?
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Message Passing (Cont.)

 Implementation of communication link
 Physical:

 Shared memory
 Hardware bus
 Network

 Logical:
 Direct or indirect
 Synchronous or asynchronous
 Automatic or explicit buffering
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Direct Communication

 Processes must name each other explicitly:
 send (P, message) – send a message to process P
 receive(Q, message) – receive a message from process Q

 Properties of communication link
 Links are established automatically
 A link is associated with exactly one pair of communicating 

processes
 Between each pair there exists exactly one link
 The link may be unidirectional, but is usually bi-directional
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Indirect Communication

 Messages are directed and received from mailboxes (also referred 
to as ports)
 Each mailbox has a unique id
 Processes can communicate only if they share a mailbox

 Properties of communication link
 Link established only if processes share a common mailbox
 A link may be associated with many processes
 Each pair of processes may share several communication links
 Link may be unidirectional or bi-directional
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Indirect Communication

 Operations
 create a new mailbox (port)
 send and receive messages through mailbox
 destroy a mailbox

 Primitives are defined as:
send(A, message) – send a message to mailbox A
receive(A, message) – receive a message from mailbox A
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Indirect Communication

 Mailbox sharing
 P1, P2, and P3 share mailbox A
 P1, sends; P2 and P3 receive
 Who gets the message?

 Solutions
 Allow a link to be associated with at most two processes
 Allow only one process at a time to execute a receive 

operation
 Allow the system to select arbitrarily the receiver.  

Sender is notified who the receiver was.



3.42 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Synchronization

 Message passing may be either blocking or non-blocking
 Blocking is considered synchronous

 Blocking send -- the sender is blocked until the message is 
received

 Blocking receive -- the receiver is  blocked until a message 
is available

 Non-blocking is considered asynchronous
 Non-blocking send -- the sender sends the message and 

continue
 Non-blocking receive -- the receiver receives:

 A valid message,  or 
 Null message

 Different combinations possible
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Synchronization (Cont.)

 Producer-consumer becomes trivial

message next_produced; 

while (true) {
/* produce an item in next produced */ 

send(next_produced); 

} 

message next_consumed;
while (true) {

receive(next_consumed);

/* consume the item in next consumed */
}
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Buffering

 Queue of messages attached to the link.
 implemented in one of three ways

1. Zero capacity – no messages are queued on a link.
Sender must wait for receiver (rendezvous)

2. Bounded capacity – finite length of n messages
Sender must wait if link full

3. Unbounded capacity – infinite length 
Sender never waits
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Communications in Client-Server Systems

 Sockets
 Remote Procedure Calls
 Pipes
 Remote Method Invocation (Java)
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Sockets

 A socket is defined as an endpoint for communication

 Concatenation of IP address and port – a number included at 
start of message packet to differentiate network services on a 
host

 The socket 161.25.19.8:1625 refers to port 1625 on host 
161.25.19.8

 Communication consists between a pair of sockets

 All ports below 1024 are well known, used for standard 
services

 Special IP address 127.0.0.1 (loopback) to refer to system on 
which process is running
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Socket Communication
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Socket programming 

Two socket types for two transport services:
 UDP: unreliable datagram
 TCP: reliable, byte stream-oriented 

Application Example:
1. Client reads a line of characters (data) from its keyboard and sends 

the data to the server.
2. The server receives the data and converts characters to uppercase.
3. The server sends the modified data to the client.
4. The client receives the modified data and displays the line on its 

screen.
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Socket programming with UDP

UDP: no “connection” between client & server
 no handshaking before sending data
 sender explicitly attaches IP destination address and port # to 

each packet
 rcvr extracts sender IP address and port# from received packet

UDP: transmitted data may be lost or received out-of-order

Application viewpoint:
 UDP provides unreliable transfer  of groups of bytes 

(“datagrams”)  between client and server
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Client/server socket interaction: UDP

close
clientSocket

read datagram from
clientSocket

create socket:
clientSocket =
socket(AF_INET,SOCK_DGRAM)

Create datagram with server IP and
port=x; send datagram via
clientSocket

create socket, port= x:
serverSocket =
socket(AF_INET,SOCK_DGRAM)

read datagram from
serverSocket

write reply to
serverSocket
specifying 
client address,
port number

server (running on serverIP) client
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Example app: UDP client

from socket import *
serverName = ‘hostname’
serverPort = 12000
clientSocket = socket(socket.AF_INET, 

socket.SOCK_DGRAM)
message = raw_input(’Input lowercase sentence:’)
clientSocket.sendto(message,(serverName, serverPort))

modifiedMessage, serverAddress = 
clientSocket.recvfrom(2048)

print modifiedMessage
clientSocket.close()

Python UDPClient
include Python’s socket 
library

create UDP socket for 
server

get user keyboard
input 

Attach server name, port to 
message; send into socket

print out received string 
and close socket

read reply characters from
socket into string
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Example app: UDP server

from socket import *
serverPort = 12000
serverSocket = socket(AF_INET, SOCK_DGRAM)
serverSocket.bind(('', serverPort))
print “The server is ready to receive”
while 1:

message, clientAddress = serverSocket.recvfrom(2048)
modifiedMessage = message.upper()
serverSocket.sendto(modifiedMessage, clientAddress)

Python UDPServer

create UDP socket

bind socket to local port 
number 12000

loop forever

Read from UDP socket into 
message, getting client’s 
address (client IP and port)

send upper case string 
back to this client
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Socket programming with TCP

client must contact server
 server process must first be 

running
 server must have created 

socket (door) that welcomes 
client’s contact

client contacts server by:
 Creating TCP socket, specifying 

IP address, port number of 
server process

 when client creates socket:
client TCP establishes 
connection to server TCP

 when contacted by client, server 
TCP creates new socket for 
server process to communicate 
with that particular client
 allows server to talk with 

multiple clients
 source port numbers used to 

distinguish clients (more in 
Chap 3)

TCP provides reliable, in-order
byte-stream transfer (“pipe”) 
between client and server

application viewpoint:
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Client/server socket interaction: TCP

wait for incoming
connection request
connectionSocket =
serverSocket.accept()

create socket,
port=x, for incoming 
request:
serverSocket = socket()

create socket,
connect to hostid, port=x
clientSocket = socket()

server (running on hostid) client

send request using
clientSocketread request from

connectionSocket

write reply to
connectionSocket

TCP 
connection setup

close
connectionSocket

read reply from
clientSocket

close
clientSocket
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Example  app: TCP client

from socket import *
serverName = ’servername’
serverPort = 12000
clientSocket = socket(AF_INET, SOCK_STREAM)
clientSocket.connect((serverName,serverPort))
sentence = raw_input(‘Input lowercase sentence:’)
clientSocket.send(sentence)
modifiedSentence = clientSocket.recv(1024)
print ‘From Server:’, modifiedSentence
clientSocket.close()

Python TCPClient

create TCP socket for 
server, remote port 12000

No need to attach server 
name, port 
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Example app: TCP server

from socket import *
serverPort = 12000
serverSocket = socket(AF_INET,SOCK_STREAM)
serverSocket.bind((‘’,serverPort))
serverSocket.listen(1)
print ‘The server is ready to receive’
while 1:

connectionSocket, addr = serverSocket.accept()

sentence = connectionSocket.recv(1024)
capitalizedSentence = sentence.upper()
connectionSocket.send(capitalizedSentence)
connectionSocket.close()

Python TCPServer

create TCP welcoming
socket

server begins listening for  
incoming TCP requests

loop forever

server waits on accept()
for incoming requests, new 
socket created on return

read bytes from socket (but 
not address as in UDP)

close connection to this 
client (but not welcoming 
socket)
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Chapter 4: Threads 

 Overview 

 Multicore Programming 

 Multithreading Models 

 Thread Libraries 

 Implicit Threading 

 Threading Issues 

 Operating System Examples 
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Motivation 

 Most modern applications are multithreaded 

 Threads run within application 

 Multiple tasks with the application can be implemented by 

separate threads 

 Update display 

 Fetch data 

 Spell checking 

 Answer a network request 

 Process creation is heavy-weight while thread creation is 

light-weight 

 Can simplify code, increase efficiency 

 Kernels are generally multithreaded 
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Multithreaded Server Architecture 
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Benefits 

 Responsiveness – may allow continued execution if part of 

process is blocked, especially important for user interfaces 

 Resource Sharing – threads share resources of process, easier 

than shared memory or message passing 

 Economy – cheaper than process creation, thread switching 

lower overhead than context switching 

 Scalability – process can take advantage of multiprocessor 

architectures 
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Multicore Programming 

 Multicore or multiprocessor systems putting pressure on 

programmers, challenges include: 

 Dividing activities 

 Balance 

 Data splitting 

 Data dependency 

 Testing and debugging 

 Parallelism implies a system can perform more than one task 

simultaneously 

 Concurrency supports more than one task making progress 

 Single processor / core, scheduler providing concurrency 
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Multicore Programming (Cont.) 

 Types of parallelism  

 Data parallelism – distributes subsets of the same data 

across multiple cores, same operation on each 

 Task parallelism – distributing threads across cores, each 

thread performing unique operation 

 As # of threads grows, so does architectural support for threading 

 CPUs have cores as well as hardware threads 

 Consider Oracle SPARC T4 with 8 cores, and 8 hardware 

threads per core 
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Concurrency vs. Parallelism 

 Concurrent execution on single-core system: 

 

 

 

 

 Parallelism on a multi-core system: 
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Single and Multithreaded Processes 
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Amdahl’s Law 

 Identifies performance gains from adding additional cores to an 

application that has both serial and parallel components 

 S is serial portion 

 N processing cores 

 

 

 

 That is, if application is 75% parallel / 25% serial, moving from 1 to 2 

cores results in speedup of 1.6 times 

 As N approaches infinity, speedup approaches 1 / S 

 

Serial portion of an application has disproportionate  effect on 

performance gained by adding additional cores 
 

 But does the law take into account contemporary multicore systems? 
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User Threads and Kernel Threads 

 User threads - management done by user-level threads library 

 Three primary thread libraries: 

  POSIX Pthreads 

  Windows threads 

  Java threads 

 Kernel threads - Supported by the Kernel 

 Examples – virtually all general purpose operating systems, including: 

 Windows  

 Solaris 

 Linux 

 Tru64 UNIX 

 Mac OS X 
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Multithreading Models 

 Many-to-One 

 

 One-to-One 

 

 Many-to-Many 
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Many-to-One 

 Many user-level threads mapped to 

single kernel thread 

 One thread blocking causes all to block 

 Multiple threads may not run in parallel 

on muticore system because only one 

may be in kernel at a time 

 Few systems currently use this model 

 Examples: 

 Solaris Green Threads 

 GNU Portable Threads 
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One-to-One 

 Each user-level thread maps to kernel thread 

 Creating a user-level thread creates a kernel thread 

 More concurrency than many-to-one 

 Number of threads per process sometimes 

restricted due to overhead 

 Examples 

 Windows 

 Linux 

 Solaris 9 and later 
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Many-to-Many Model 

 Allows many user level threads to be 

mapped to many kernel threads 

 Allows the  operating system to create 

a sufficient number of kernel threads 

 Solaris prior to version 9 

 Windows  with the ThreadFiber 

package 
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Two-level Model 

 Similar to M:M, except that it allows a user thread to be 

bound to kernel thread 

 Examples 

 IRIX 

 HP-UX 

 Tru64 UNIX 

 Solaris 8 and earlier 
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Thread Libraries 

 Thread library provides programmer with API for creating 

and managing threads 

 Two primary ways of implementing 

 Library entirely in user space 

 Kernel-level library supported by the OS 
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Pthreads 

 May be provided either as user-level or kernel-level 

 A POSIX standard (IEEE 1003.1c) API for thread creation and 

synchronization 

 Specification, not implementation 

 API specifies behavior of the thread library, implementation is 

up to development of the library 

 Common in UNIX operating systems (Solaris, Linux, Mac OS X) 

 



4.20 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition 

Pthreads Example 
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Pthreads Example (Cont.) 
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Pthreads Example (Cont.)  
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Pthreads Code for Joining 10 Threads 
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Pthreads Code for Joining 10 Threads  
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Windows  Multithreaded C Program 
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Windows  Multithreaded C Program (Cont.) 
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Java Threads 

 Java threads are managed by the JVM 

 Typically implemented using the threads model provided by 

underlying OS 

 Java threads may be created by: 

 

 

 

 

 Extending Thread class 

 Implementing the Runnable interface 
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Java Multithreaded Program 
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Java Multithreaded Program (Cont.) 
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Implicit Threading 

 Growing in popularity as numbers of threads increase, 

program correctness more difficult with explicit threads 

 Creation and management of threads done by compilers and 

run-time libraries rather than programmers 

 Three methods explored 

 Thread Pools 

 OpenMP 

 Grand Central Dispatch 

 Other methods include Microsoft Threading Building Blocks 
(TBB), java.util.concurrent package 
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Thread Pools 

 Create a number of threads in a pool where they await work 

 Advantages: 

 Usually slightly faster to service a request with an existing 

thread than create a new thread 

 Allows the number of threads in the application(s) to be 

bound to the size of the pool 

 Separating task to be performed from mechanics of 

creating task allows different strategies for running task 

 i.e.Tasks could be scheduled to run periodically 

 Windows API supports thread pools: 
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OpenMP 

 Set of compiler directives and an 

API for C, C++, FORTRAN  

 Provides support for parallel 

programming in shared-memory 

environments 

 Identifies parallel regions – 

blocks of code that can run in 

parallel 

#pragma omp parallel  

Create as many threads as there are 

cores 

#pragma omp parallel for 

for(i=0;i<N;i++) {  

    c[i] = a[i] + b[i];  

}  

Run for loop in parallel 
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Grand Central Dispatch 

 Apple technology for Mac OS X and iOS operating systems 

 Extensions to C, C++ languages, API, and run-time library 

 Allows identification of parallel sections 

 Manages most of the details of threading 

 Block is in “^{ }” -   ˆ{ printf("I am a block"); }  

 Blocks placed in dispatch queue 

 Assigned to available thread in thread pool when removed 

from queue 
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Grand Central Dispatch 

 Two types of dispatch queues: 

 serial – blocks removed in FIFO order, queue is per process, 

called main queue 

 Programmers can create additional serial queues within 

program 

 concurrent – removed in FIFO order but several may be 

removed at a time 

 Three system wide queues with priorities low, default, high 
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Threading Issues 

 Semantics of fork() and exec() system calls 

 Signal handling 

 Synchronous and asynchronous 

 Thread cancellation of target thread 

 Asynchronous or deferred 

 Thread-local storage 

 Scheduler Activations 
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Semantics of fork() and exec() 

 Does fork()duplicate only the calling thread or all 

threads? 

 Some UNIXes have two versions of fork 

 exec() usually works as normal – replace the running 

process including all threads 
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Signal Handling 

 Signals are used in UNIX systems to notify a process that a 

particular event has occurred. 

 A signal handler is used to process signals 

1. Signal is generated by particular event 

2. Signal is delivered to a process 

3. Signal is handled by one of two signal handlers: 

1. default 

2. user-defined 

 Every signal has default handler that kernel runs when 

handling signal 

 User-defined signal handler can override default 

 For single-threaded, signal delivered to process 
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Signal Handling (Cont.) 

 Where should a signal be delivered for multi-threaded?  

 Deliver the signal to the thread to which the signal 

applies 

 Deliver the signal to every thread in the process 

 Deliver the signal to certain threads in the process 

 Assign a specific thread to receive all signals for the 

process 
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Thread Cancellation 

 Terminating a thread before it has finished 

 Thread to be canceled is target thread 

 Two general approaches: 

 Asynchronous cancellation terminates the target thread 

immediately 

 Deferred cancellation allows the target thread to periodically 

check if it should be cancelled 

 Pthread code to create and cancel a thread: 
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Thread Cancellation (Cont.) 

 Invoking thread cancellation requests cancellation, but actual 

cancellation depends on thread state 

 

 

 

 

 If thread has cancellation disabled, cancellation remains pending 

until thread enables it 

 Default type is deferred 

 Cancellation only occurs when thread reaches cancellation 

point 

 I.e. pthread_testcancel() 

 Then cleanup handler is invoked 

 On Linux systems, thread cancellation is handled through signals 
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Thread-Local Storage 

 Thread-local storage (TLS) allows each thread to have its 

own copy of data 

 Useful when you do not have control over the thread creation 

process (i.e., when using a thread pool) 

 Different from local variables 

 Local variables visible only during single function 

invocation 

 TLS visible across function invocations 

 Similar to static data 

 TLS is unique to each thread 
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Scheduler Activations 

 Both M:M and Two-level models require 

communication to maintain the appropriate 

number of kernel threads allocated to the 

application 

 Typically use an intermediate data structure 

between user and kernel threads – lightweight 

process (LWP) 

 Appears to be a virtual processor on which 

process can schedule user thread to run 

 Each LWP attached to kernel thread 

 How many LWPs to create? 

 Scheduler activations provide upcalls - a 

communication mechanism from the kernel to 

the upcall handler in the thread library 

 This communication allows an application to 

maintain the correct number kernel threads 



4.41 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition 

Operating System Examples 

 Windows Threads 

 Linux Threads 



4.42 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition 

Windows Threads 

 Windows implements the Windows API – primary API for Win 

98, Win NT, Win 2000, Win XP, and Win 7 

 Implements the one-to-one mapping, kernel-level 

 Each thread contains 

 A thread id 

 Register set representing state of processor 

 Separate user and kernel stacks for when thread runs in 

user mode or kernel mode 

 Private data storage area used by run-time libraries and 

dynamic link libraries (DLLs) 

 The register set, stacks, and private storage area are known as 

the context of the thread 
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Windows Threads (Cont.) 

 The primary data structures of a thread include: 

 ETHREAD (executive thread block) – includes pointer to 

process to which thread belongs and to KTHREAD, in 

kernel space 

 KTHREAD (kernel thread block) – scheduling and 

synchronization info, kernel-mode stack, pointer to TEB, in 

kernel space 

 TEB (thread environment block) – thread id, user-mode 

stack, thread-local storage, in user space 
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Windows Threads Data Structures 
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Linux Threads 

 Linux refers to them as tasks rather than threads 

 Thread creation is done through clone() system call 

 clone() allows a child task to share the address space of the 

parent task (process) 

 Flags control behavior 

 

 

 

 

 

 struct task_struct points to process data structures 

(shared or unique) 
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Chapter 5: Process Synchronization

 Background
 The Critical-Section Problem
 Peterson’s Solution
 Synchronization Hardware
 Mutex Locks
 Semaphores
 Classic Problems of Synchronization
 Monitors
 Synchronization Examples 
 Alternative Approaches
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Background

 Processes can execute concurrently
 May be interrupted at any time, partially completing 

execution
 Concurrent access to shared data may result in data 

inconsistency
 Maintaining data consistency requires mechanisms to ensure 

the orderly execution of cooperating processes
 Illustration of the problem:

Suppose that we wanted to provide a solution to the 
consumer-producer problem that fills all the buffers. We can 
do so by having an integer counter that keeps track of the 
number of full buffers.  Initially, counter is set to 0. It is 
incremented by the producer after it produces a new buffer 
and is decremented by the consumer after it consumes a 
buffer.
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Producer 

while (true) {
/* produce an item in next produced */ 

while (counter == BUFFER_SIZE) ; 

/* do nothing */ 

buffer[in] = next_produced; 

in = (in + 1) % BUFFER_SIZE; 

counter++; 

} 
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Consumer

while (true) {

while (counter == 0) 

; /* do nothing */ 

next_consumed = buffer[out]; 

out = (out + 1) % BUFFER_SIZE; 

counter--; 

/* consume the item in next consumed */ 

} 
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Race Condition

 counter++ could be implemented as

register1 = counter
register1 = register1 + 1
counter = register1

 counter-- could be implemented as

register2 = counter
register2 = register2 - 1
counter = register2

 Consider this execution interleaving with “count = 5” initially:
S0: producer execute register1 = counter {register1 = 5}
S1: producer execute register1 = register1 + 1   {register1 = 6} 
S2: consumer execute register2 = counter {register2 = 5} 
S3: consumer execute register2 = register2 – 1  {register2 = 4} 
S4: producer execute counter = register1         {counter = 6 } 
S5: consumer execute counter = register2        {counter = 4}
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Critical Section Problem

 Consider system of n processes {p0, p1, … pn-1}
 Each process has critical section segment of code

 Process may be changing common variables, updating 
table, writing file, etc

 When one process in critical section, no other may be in its 
critical section

 Critical section problem is to design protocol to solve this 
problem

 Each process must ask permission to enter critical section in 
entry section, may follow critical section with exit section, 
then remainder section
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Critical Section

 General structure of process Pi  
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Solution to Critical-Section Problem

1.   Mutual Exclusion - If process Pi is executing in its critical 
section, then no other processes can be executing in their 
critical sections

2.   Progress - If no process is executing in its critical section and 
there exist some processes that wish to enter their critical 
section, then the selection of the processes that will enter the 
critical section next cannot be postponed indefinitely

3.  Bounded Waiting - A bound must exist on the number of 
times that other processes are allowed to enter their critical 
sections after a process has made a request to enter its critical 
section and before that request is granted
 Assume that each process executes at a nonzero speed 
 No assumption concerning relative speed of the n

processes
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Critical-Section Handling in OS 

Two approaches depending on if kernel is preemptive or non-
preemptive 
 Preemptive – allows preemption of process when running 

in kernel mode
 Non-preemptive – runs until exits kernel mode, blocks, or 

voluntarily yields CPU
Essentially free of race conditions in kernel mode
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Peterson’s Solution

 Good algorithmic  description of solving the problem
 Two process solution
 Assume that the load and store machine-language 

instructions are atomic; that is, cannot be interrupted
 The two processes share two variables:

 int turn; 

 Boolean flag[2]

 The variable turn indicates whose turn it is to enter the critical 
section

 The flag array is used to indicate if a process is ready to enter 
the critical section. flag[i] = true implies that process Pi is 
ready!
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Algorithm for Process Pi

do { 
flag[i] = true; 

turn = j; 

while (flag[j] && turn = = j); 

critical section 

flag[i] = false; 

remainder section 

} while (true); 
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Peterson’s Solution (Cont.)

 Provable that the three  CS requirement are met:
1.   Mutual exclusion is preserved

Pi enters CS only if:

either flag[j] = false or turn = i

Pj enters CS only if:

either flag[i] = false or turn = j

2.   Progress requirement is satisfied
3.   Bounded-waiting requirement is met
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Synchronization Hardware

 Many systems provide hardware support for implementing the 
critical section code.

 All solutions below based on idea of locking
 Protecting critical regions via locks

 Uniprocessors – could disable interrupts
 Currently running code would execute without preemption
 Generally too inefficient on multiprocessor systems

 Operating systems using this not broadly scalable
 Modern machines provide special atomic hardware instructions

 Atomic = non-interruptible
 Either test memory word and set value
 Or swap contents of two memory words
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Solution to Critical-section Problem Using Locks

do { 

acquire lock 

critical section 

release lock 

remainder section 

} while (TRUE); 
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test_and_set  Instruction 

Definition:
boolean test_and_set (boolean *target)

{

boolean rv = *target;

*target = TRUE;

return rv:

}

1. Executed atomically
2. Returns the original value of passed parameter
3. Set the new value of passed parameter to “TRUE”.
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Solution using test_and_set()

 Shared Boolean variable lock, initialized to FALSE
 Solution:

do {
while (test_and_set(&lock)) 

; /* do nothing */ 

/* critical section */ 

lock = false; 

/* remainder section */ 

} while (true);
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compare_and_swap Instruction

Definition:
int compare_and_swap(int *value, int expected, int new_value) { 

int temp = *value; 

if (*value == expected) 

*value = new_value; 

return temp; 

} 

1. Executed atomically
2. Returns the original value of passed parameter “value”
3. Set  the variable “value”  the value of the passed parameter “new_value” 

but only if “value” ==“expected”. That is, the swap takes place only under 
this condition.
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Solution using compare_and_swap

 Shared integer  “lock” initialized to 0; 
 Solution:

do {
while (compare_and_swap(&lock, 0, 1) != 0) 

; /* do nothing */ 

/* critical section */ 

lock = 0; 

/* remainder section */ 

} while (true); 
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Mutex Locks

 Previous solutions are complicated and generally inaccessible 
to application programmers

 OS designers build software tools to solve critical section 
problem

 Simplest is mutex lock
 Protect a critical section  by first acquire() a lock then 

release() the lock
 Boolean variable indicating if lock is available or not

 Calls to acquire() and release() must be atomic
 Usually implemented via hardware atomic instructions

 But this solution requires busy waiting
 This lock therefore called a spinlock
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acquire() and release()

 acquire() {
while (!available) 

; /* busy wait */ 

available = false; 

} 

 release() { 

available = true; 

} 

 do { 

acquire lock

critical section

release lock 

remainder section 

} while (true); 
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Semaphore

 Synchronization tool that provides more sophisticated ways (than Mutex locks)  
for process to synchronize their activities.

 Semaphore S – integer variable
 Can only be accessed via two indivisible (atomic) operations

 wait() and signal()

 Originally called P() and V()

 Definition of  the wait() operation

wait(S) { 

while (S <= 0)

; // busy wait

S--;

}

 Definition of  the signal() operation

signal(S) { 

S++;

}
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Semaphore Usage

 Counting semaphore – integer value can range over an unrestricted 
domain

 Binary semaphore – integer value can range only between 0 and 1
 Same as a mutex lock

 Can solve various synchronization problems
 Consider P1 and P2 that require S1 to happen before S2

Create a semaphore “synch” initialized to 0 
P1:

S1;

signal(synch);

P2:

wait(synch);

S2;

 Can implement a counting semaphore S as a binary semaphore
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Semaphore Implementation

 Must guarantee that no two processes can execute  the wait() 
and signal() on the same semaphore at the same time

 Thus, the implementation becomes the critical section problem 
where the wait and signal code are placed in the critical 
section
 Could now have busy waiting in critical section 

implementation
 But implementation code is short
 Little busy waiting if critical section rarely occupied
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Semaphore Implementation with no Busy waiting 

 With each semaphore there is an associated waiting queue
 Each entry in a waiting queue has two data items:

 value (of type integer)
 pointer to next record in the list

 Two operations:
 block – place the process invoking the operation on the 

appropriate waiting queue
 wakeup – remove one of processes in the waiting queue 

and place it in the ready queue
 typedef struct{ 

int value; 

struct process *list; 

} semaphore; 
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Implementation with no Busy waiting (Cont.)

wait(semaphore *S) { 

S->value--; 

if (S->value < 0) {
add this process to S->list; 

block(); 

} 

}

signal(semaphore *S) { 

S->value++; 

if (S->value <= 0) {
remove a process P from S->list; 

wakeup(P); 

} 

} 
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Deadlock and Starvation

 Deadlock – two or more processes are waiting indefinitely for an 
event that can be caused by only one of the waiting processes

 Let S and Q be two semaphores initialized to 1
P0 P1

wait(S); wait(Q);

wait(Q); wait(S);

... ...

signal(S);                 signal(Q);

signal(Q);                 signal(S);

 Starvation – indefinite blocking  
 A process may never be removed from the semaphore queue in which it is 

suspended
 Priority Inversion – Scheduling problem when lower-priority process 

holds a lock needed by higher-priority process
 Solved via priority-inheritance protocol
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Classical Problems of Synchronization

 Classical problems used to test newly-proposed synchronization 
schemes
 Bounded-Buffer Problem
 Readers and Writers Problem
 Dining-Philosophers Problem
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Bounded-Buffer Problem

 n buffers, each can hold one item

 Semaphore mutex initialized to the value 1

 Semaphore full initialized to the value 0

 Semaphore empty initialized to the value n
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Bounded Buffer Problem (Cont.)

 The structure of the producer process

do { 

...
/* produce an item in next_produced */ 

... 

wait(empty); 

wait(mutex); 

...
/* add next produced to the buffer */ 

... 

signal(mutex); 

signal(full); 

} while (true);
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Bounded Buffer Problem (Cont.)

 The structure of the consumer process

Do { 

wait(full); 

wait(mutex); 

...
/* remove an item from buffer to next_consumed */ 

... 

signal(mutex); 

signal(empty); 

...
/* consume the item in next consumed */ 

...
} while (true); 
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Readers-Writers Problem

 A data set is shared among a number of concurrent processes
 Readers – only read the data set; they do not perform any updates
 Writers   – can both read and write

 Problem – allow multiple readers to read at the same time
 Only one single writer can access the shared data at the same time

 Several variations of how readers and writers are considered  – all 
involve some form of priorities

 Shared Data
 Data set

 Semaphore rw_mutex initialized to 1

 Semaphore mutex initialized to 1

 Integer read_count initialized to 0
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Readers-Writers Problem (Cont.)

 The structure of a writer process

do {
wait(rw_mutex); 

...
/* writing is performed */ 

... 

signal(rw_mutex); 

} while (true);
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Readers-Writers Problem (Cont.)
 The structure of a reader process

do {
wait(mutex);
read_count++;
if (read_count == 1) 

wait(rw_mutex); 

signal(mutex); 

...
/* reading is performed */ 

... 

wait(mutex);
read count--;
if (read_count == 0) 

signal(rw_mutex); 

signal(mutex); 

} while (true);
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Dining-Philosophers Problem

 Philosophers spend their lives alternating thinking and eating
 Don’t interact with their neighbors, occasionally try to pick up 2 

chopsticks (one at a time) to eat from bowl
 Need both to eat, then release both when done

 In the case of 5 philosophers
 Shared data 

 Bowl of rice (data set)
 Semaphore chopstick [5] initialized to 1
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Dining-Philosophers Problem Algorithm

 The structure of Philosopher i:
do { 

wait (chopstick[i] );

wait (chopStick[ (i + 1) % 5] );

//  eat

signal (chopstick[i] );

signal (chopstick[ (i + 1) % 5] );

//  think

} while (TRUE);

 What is the problem with this algorithm?
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Dining-Philosophers Problem Algorithm (Cont.)

 Deadlock handling
 Allow at most 4 philosophers to be sitting 

simultaneously at  the table.
 Allow a philosopher to pick up  the forks only if both 

are available (picking must be done in a critical 
section.

 Use an asymmetric solution  -- an odd-numbered  
philosopher picks  up first the left chopstick and then 
the right chopstick. Even-numbered  philosopher picks  
up first the right chopstick and then the left chopstick. 
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Problems with Semaphores

 Incorrect use of semaphore operations:

 signal (mutex)  ….  wait (mutex)

 wait (mutex)  …  wait (mutex)

 Omitting  of wait (mutex) or signal (mutex) (or both)

 Deadlock and starvation are possible.
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Monitors

 A high-level abstraction that provides a convenient and effective 
mechanism for process synchronization

 Abstract data type, internal variables only accessible by code within the 
procedure

 Only one process may be active within the monitor at a time
 But not powerful enough to model some synchronization schemes

monitor monitor-name
{
// shared variable declarations
procedure P1 (…) { …. }

procedure Pn (…) {……}

Initialization code (…) { … }
}

}
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Schematic view of a Monitor
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Condition Variables

 condition x, y;

 Two operations are allowed on a condition variable:

 x.wait() – a process that invokes the operation is 
suspended until x.signal() 

 x.signal() – resumes one of processes (if any) that
invoked x.wait()

 If no x.wait() on the variable, then it has no effect on 
the variable
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Monitor with Condition Variables
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Condition Variables Choices

 If process P invokes x.signal(), and process Q is suspended in 
x.wait(), what should happen next?

 Both Q and P cannot execute in paralel. If Q is resumed, then P 
must wait

 Options include
 Signal and wait – P waits until Q either leaves the monitor or it 

waits for another condition
 Signal and continue – Q waits until P either leaves the monitor or it  

waits for another condition
 Both have pros and cons – language implementer can decide
 Monitors implemented in Concurrent Pascal compromise

 P executing signal immediately leaves the monitor, Q is 
resumed

 Implemented in other languages including Mesa, C#, Java



5.45 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Monitor Solution to Dining Philosophers
monitor DiningPhilosophers
{ 

enum { THINKING; HUNGRY, EATING) state [5] ;
condition self [5];

void pickup (int i) { 
state[i] = HUNGRY;
test(i);
if (state[i] != EATING) self[i].wait;

}

void putdown (int i) { 
state[i] = THINKING;

// test left and right neighbors
test((i + 4) % 5);
test((i + 1) % 5);

}
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Solution to Dining Philosophers (Cont.)

void test (int i) { 
if ((state[(i + 4) % 5] != EATING) &&
(state[i] == HUNGRY) &&
(state[(i + 1) % 5] != EATING) ) { 

state[i] = EATING ;
self[i].signal () ;
}

}

initialization_code() { 
for (int i = 0; i < 5; i++)
state[i] = THINKING;

}
}
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 Each philosopher i invokes the operations pickup() and 
putdown() in the following sequence:

DiningPhilosophers.pickup(i);

EAT

DiningPhilosophers.putdown(i);

 No deadlock, but starvation is possible

Solution to Dining Philosophers (Cont.)
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Monitor Implementation Using Semaphores

 Variables 

semaphore mutex;  // (initially  = 1)
semaphore next;   // (initially  = 0)
int next_count = 0;

 Each procedure F will be replaced by

wait(mutex);
…

body of F;
…

if (next_count > 0)
signal(next)

else 
signal(mutex);

 Mutual exclusion within a monitor is ensured
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Monitor Implementation – Condition Variables

 For each condition variable x, we  have:

semaphore x_sem; // (initially  = 0)
int x_count = 0;

 The operation x.wait can be implemented as:

x_count++;
if (next_count > 0)

signal(next);
else

signal(mutex);
wait(x_sem);
x_count--;
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Monitor Implementation (Cont.)

 The operation x.signal can be implemented as:

if (x_count > 0) {
next_count++;
signal(x_sem);
wait(next);
next_count--;

}
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Resuming Processes within a Monitor

 If several processes queued on condition x, and x.signal() 
executed, which should be resumed?

 FCFS frequently not adequate 
 conditional-wait construct of the form x.wait(c)

 Where c is priority number
 Process with lowest number (highest priority) is 

scheduled next
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 Allocate a single resource among competing processes using 
priority numbers that specify the maximum time a process  
plans to use the resource

R.acquire(t);
...

access the resurce;
...

R.release;

 Where R is an instance of  type ResourceAllocator

Single Resource allocation 
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A Monitor to Allocate Single Resource
monitor ResourceAllocator 
{ 

boolean busy; 
condition x; 
void acquire(int time) { 

if (busy) 
x.wait(time); 

busy = TRUE; 
} 
void release() { 

busy = FALSE; 
x.signal(); 

} 
initialization code() {

busy = FALSE; 
}

}
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Synchronization Examples

 Solaris
 Windows
 Linux
 Pthreads
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Solaris Synchronization

 Implements a variety of locks to support multitasking, multithreading 
(including real-time threads), and multiprocessing

 Uses adaptive mutexes for efficiency when protecting data from short 
code segments
 Starts as a standard semaphore spin-lock
 If lock held, and by a thread running on another CPU, spins
 If lock held by non-run-state thread, block and sleep waiting for signal of 

lock being released

 Uses condition variables
 Uses readers-writers locks when longer sections of code need 

access to data
 Uses turnstiles to order the list of threads waiting to acquire either an 

adaptive mutex or reader-writer lock
 Turnstiles are per-lock-holding-thread, not per-object

 Priority-inheritance per-turnstile gives the running thread the highest of 
the priorities of the threads in its turnstile
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Windows Synchronization

 Uses interrupt masks to protect access to global resources on 
uniprocessor systems

 Uses spinlocks on multiprocessor systems
 Spinlocking-thread will never be preempted

 Also provides dispatcher objects user-land which may act 
mutexes, semaphores, events, and timers
 Events

 An event acts much like a condition variable
 Timers notify one or more thread when time expired
 Dispatcher objects either signaled-state (object available) 

or non-signaled state (thread will block)
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Linux Synchronization

 Linux:
 Prior to kernel Version 2.6, disables interrupts to 

implement short critical sections
 Version 2.6 and later, fully preemptive

 Linux provides:
 Semaphores
 atomic integers
 spinlocks
 reader-writer versions of both

 On single-cpu system, spinlocks replaced by enabling and 
disabling kernel preemption
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Pthreads Synchronization

 Pthreads API is OS-independent
 It provides:

 mutex locks
 condition variable

 Non-portable extensions include:
 read-write locks
 spinlocks
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Alternative Approaches

 Transactional Memory

 OpenMP

 Functional Programming Languages
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 A memory transaction is a sequence of read-write operations 
to memory that are performed atomically.

void update()
{

/* read/write memory */
}

Transactional Memory
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 OpenMP is a set of compiler directives and API that support 
parallel progamming.

void update(int value)
{

#pragma omp critical
{

count += value
}

}

The code contained within the #pragma omp critical directive 
is treated as a critical section and performed atomically.

OpenMP
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 Functional programming languages offer a different paradigm 
than procedural languages in that they do not maintain state. 

 Variables are treated as immutable and cannot change state 
once they have been assigned a value.

 There is increasing interest in functional languages such as 
Erlang and Scala for their approach in handling data races.

Functional Programming Languages
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Chapter 6:  CPU Scheduling 
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Chapter 6:  CPU Scheduling 
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 Scheduling Criteria  

 Scheduling Algorithms 

 Thread Scheduling 

 Multiple-Processor Scheduling 

 Real-Time CPU Scheduling 

 Operating Systems Examples 

 Algorithm Evaluation 
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Basic Concepts 

 Maximum CPU utilization 

obtained with multiprogramming 

 CPU–I/O Burst Cycle – Process 

execution consists of a cycle of 

CPU execution and I/O wait 

 CPU burst followed by I/O burst 

 CPU burst distribution is of main 

concern 
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Histogram of CPU-burst Times 
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CPU Scheduler 

 Short-term scheduler selects from among the processes in 

ready queue, and allocates the CPU to one of them 

 Queue may be ordered in various ways 

 CPU scheduling decisions may take place when a process: 

1. Switches from running to waiting state 

2. Switches from running to ready state 

3. Switches from waiting to ready 

4. Terminates 

 Scheduling under 1 and 4 is nonpreemptive 

 All other scheduling is preemptive 

 Consider access to shared data 

 Consider preemption while in kernel mode 

 Consider interrupts occurring during crucial OS activities 
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Dispatcher 

 Dispatcher module gives control of the CPU to the process 

selected by the short-term scheduler; this involves: 

 switching context 

 switching to user mode 

 jumping to the proper location in the user program to 

restart that program 

 Dispatch latency – time it takes for the dispatcher to stop 

one process and start another running 
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Scheduling Criteria 

 CPU utilization – keep the CPU as busy as possible 

 Throughput – # of processes that complete their execution per 

time unit 

 Turnaround time – amount of time to execute a particular 

process 

 Waiting time – amount of time a process has been waiting in the 

ready queue 

 Response time – amount of time it takes from when a request 

was submitted until the first response is produced, not output  (for 

time-sharing environment) 
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Scheduling Algorithm Optimization Criteria 

 Max CPU utilization 

 Max throughput 

 Min turnaround time  

 Min waiting time  

 Min response time 
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First- Come, First-Served (FCFS) Scheduling 

  Process Burst Time  

   P1 24 

   P2  3 

   P3  3  

 Suppose that the processes arrive in the order: P1 , P2 , P3   

The Gantt Chart for the schedule is: 
 
 
 
 
 

 

 Waiting time for P1  = 0; P2  = 24; P3 = 27 

 Average waiting time:  (0 + 24 + 27)/3 = 17 

P P P
1 2 3

0 24 3027
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FCFS Scheduling (Cont.) 

Suppose that the processes arrive in the order: 

   P2 , P3 , P1  

 The Gantt chart for the schedule is: 

 

 

 

 

 Waiting time for P1 = 6; P2 = 0; P3 = 3 

 Average waiting time:   (6 + 0 + 3)/3 = 3 

 Much better than previous case 

 Convoy effect - short process behind long process 

 Consider one CPU-bound and many I/O-bound processes 

P
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P
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Shortest-Job-First (SJF) Scheduling 

 Associate with each process the length of its next CPU burst 

  Use these lengths to schedule the process with the shortest 

time 

 SJF is optimal – gives minimum average waiting time for a given 

set of processes 

 The difficulty is knowing the length of the next CPU request 

 Could ask the user 
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Example of SJF 

                       ProcessArrival Time Burst Time 

               P1 0.0 6 

              P2  2.0 8 

              P3 4.0 7 

              P4 5.0 3 

 

 SJF scheduling chart 

 

 

 

 

 Average waiting time = (3 + 16 + 9 + 0) / 4 = 7 
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Determining Length of Next CPU Burst 

 Can only estimate the length – should be similar to the previous one 

 Then pick process with shortest predicted next CPU burst 

 

 Can be done by using the length of previous CPU bursts, using 

exponential averaging 

 

 

 

 

 Commonly, α set to ½ 

 Preemptive version called shortest-remaining-time-first 
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Prediction of the Length of the Next CPU Burst 
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Examples of Exponential Averaging 

  =0 

 n+1 = n 

 Recent history does not count 

  =1 

  n+1 =  tn 

 Only the actual last CPU burst counts 

 If we expand the formula, we get: 

n+1 =  tn+(1 - ) tn -1 + … 

            +(1 -  )j  tn -j + … 

            +(1 -  )n +1 0 

 

 Since both  and (1 - ) are less than or equal to 1, each 
successive term has less weight than its predecessor 
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Example of Shortest-remaining-time-first 

 Now we add the concepts of varying arrival times and preemption to 

the analysis 

           ProcessAarri Arrival TimeT Burst Time 

   P1 0 8 

   P2  1 4 

   P3 2 9 

   P4 3 5 

 Preemptive SJF Gantt Chart 

 

 

 

 Average waiting time = [(10-1)+(1-1)+(17-2)+5-3)]/4 = 26/4 = 6.5 

msec 
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Priority Scheduling 

 A priority number (integer) is associated with each process 
 

 The CPU is allocated to the process with the highest priority 

(smallest integer  highest priority) 

 Preemptive 

 Nonpreemptive 
 

 SJF is priority scheduling where priority is the inverse of predicted 

next CPU burst time 
 

 Problem  Starvation – low priority processes may never execute 
 

 Solution  Aging – as time progresses increase the priority of the 

process 
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Example of Priority Scheduling 

           ProcessA arri Burst TimeT Priority 

   P1 10 3 

   P2  1 1 

   P3 2 4 

   P4 1 5 

  P5 5 2 

 

 Priority scheduling Gantt Chart 

 

 

 

 

 Average waiting time = 8.2 msec 
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Round Robin (RR) 

 Each process gets a small unit of CPU time (time quantum q), 

usually 10-100 milliseconds.  After this time has elapsed, the 

process is preempted and added to the end of the ready queue. 

 If there are n processes in the ready queue and the time 

quantum is q, then each process gets 1/n of the CPU time in 

chunks of at most q time units at once.  No process waits more 

than (n-1)q time units. 

 Timer interrupts every quantum to schedule next process 

 Performance 

 q large  FIFO 

 q small  q must be large with respect to context switch, 

otherwise overhead is too high 
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Example of RR with Time Quantum = 4 

  Process Burst Time 

  P1 24 

   P2  3 

   P3 3  

 The Gantt chart is:  
 
 
 
 
 
 

 Typically, higher average turnaround than SJF, but better 
response 

 q should be large compared to context switch time 

 q usually 10ms to 100ms, context switch < 10 usec 
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Time Quantum and Context Switch Time 
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Turnaround Time Varies With The Time Quantum 

80% of CPU bursts 
should be shorter than q 
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Multilevel Queue 

 Ready queue is partitioned into separate queues, eg: 

 foreground (interactive) 

 background (batch) 

 Process permanently in a given queue 

 Each queue has its own scheduling algorithm: 

 foreground – RR 

 background – FCFS 

 Scheduling must be done between the queues: 

 Fixed priority scheduling; (i.e., serve all from foreground then 

from background).  Possibility of starvation. 

 Time slice – each queue gets a certain amount of CPU time 

which it can schedule amongst its processes; i.e., 80% to 

foreground in RR 

 20% to background in FCFS  
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Multilevel Queue Scheduling 
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Multilevel Feedback Queue 

 A process can move between the various queues; aging can be 

implemented this way 

 Multilevel-feedback-queue scheduler defined by the following 

parameters: 

 number of queues 

 scheduling algorithms for each queue 

 method used to determine when to upgrade a process 

 method used to determine when to demote a process 

 method used to determine which queue a process will enter 

when that process needs service 
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Example of Multilevel Feedback Queue 

 Three queues:  

 Q0 – RR with time quantum 8 

milliseconds 

 Q1 – RR time quantum 16 milliseconds 

 Q2 – FCFS 

 

 Scheduling 

 A new job enters queue Q0 which is 

served FCFS 

 When it gains CPU, job receives 8 

milliseconds 

 If it does not finish in 8 

milliseconds, job is moved to 

queue Q1 

 At Q1 job is again served FCFS and 

receives 16 additional milliseconds 

 If it still does not complete, it is 

preempted and moved to queue Q2 
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Thread Scheduling 

 Distinction between user-level and kernel-level threads 

 When threads supported, threads scheduled, not processes 

 Many-to-one and many-to-many models, thread library schedules 

user-level threads to run on LWP 

 Known as process-contention scope (PCS) since scheduling 

competition is within the process 

 Typically done via priority set by programmer 

 Kernel thread scheduled onto available CPU is system-contention 

scope (SCS) – competition among all threads in system 
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Pthread Scheduling 

 API allows specifying either PCS or SCS during thread creation 

 PTHREAD_SCOPE_PROCESS schedules threads using 

PCS scheduling 

 PTHREAD_SCOPE_SYSTEM schedules threads using 

SCS scheduling 

 Can be limited by OS – Linux and Mac OS X only allow 

PTHREAD_SCOPE_SYSTEM 
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Pthread Scheduling API 
#include <pthread.h>  

#include <stdio.h>  

#define NUM_THREADS 5  

int main(int argc, char *argv[]) {  

   int i, scope; 

   pthread_t tid[NUM THREADS];  

   pthread_attr_t attr;  

   /* get the default attributes */  

   pthread_attr_init(&attr);  

   /* first inquire on the current scope */ 

   if (pthread_attr_getscope(&attr, &scope) != 0)  

      fprintf(stderr, "Unable to get scheduling scope\n");  

   else {  

      if (scope == PTHREAD_SCOPE_PROCESS)  

         printf("PTHREAD_SCOPE_PROCESS");  

      else if (scope == PTHREAD_SCOPE_SYSTEM)  

         printf("PTHREAD_SCOPE_SYSTEM");  

      else 

         fprintf(stderr, "Illegal scope value.\n");  

   }  
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Pthread Scheduling API 

   /* set the scheduling algorithm to PCS or SCS */  

   pthread_attr_setscope(&attr, PTHREAD_SCOPE_SYSTEM);  

   /* create the threads */ 

   for (i = 0; i < NUM_THREADS; i++)  

      pthread_create(&tid[i],&attr,runner,NULL);  

   /* now join on each thread */ 

   for (i = 0; i < NUM_THREADS; i++)  

      pthread_join(tid[i], NULL);  

}  

/* Each thread will begin control in this function */  

void *runner(void *param) 

{  

   /* do some work ... */  

   pthread_exit(0);  

}  
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Multiple-Processor Scheduling 

 CPU scheduling more complex when multiple CPUs are 

available 

 Homogeneous processors within a multiprocessor 

 Asymmetric multiprocessing – only one processor accesses 

the system data structures, alleviating the need for data sharing 

 Symmetric multiprocessing (SMP) – each processor is self-

scheduling, all processes in common ready queue, or each has 

its own private queue of ready processes 

 Currently, most common 

 Processor affinity – process has affinity for processor on which 

it is currently running 

 soft affinity 

 hard affinity 

 Variations including processor sets 
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NUMA and CPU Scheduling 

Note that memory-placement algorithms can also consider affinity 
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Multiple-Processor Scheduling – Load Balancing 

 If SMP, need to keep all CPUs loaded for efficiency 

 Load balancing attempts to keep workload evenly distributed 

 Push migration – periodic task checks load on each processor, 

and if found pushes task from overloaded CPU to other CPUs 

 Pull migration – idle processors pulls waiting task from busy 

processor 
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Multicore Processors 

 Recent trend to place multiple processor cores on same 

physical chip 

 Faster and consumes less power 

 Multiple threads per core also growing 

 Takes advantage of memory stall to make progress on 

another thread while memory retrieve happens 
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Multithreaded Multicore System 
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Real-Time CPU Scheduling 

 Can present obvious 

challenges 

 Soft real-time systems – no 

guarantee as to when critical 

real-time process will be 

scheduled 

 Hard real-time systems – 

task must be serviced by its 

deadline 

 Two types of latencies affect 

performance 

1. Interrupt latency – time from 

arrival of interrupt to start of 

routine that services interrupt 

2. Dispatch latency – time for 

schedule to take current process 

off CPU and switch to another 
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Real-Time CPU Scheduling (Cont.) 

 Conflict phase of 

dispatch latency: 

1. Preemption of 

any process 

running in kernel 

mode 

2. Release by low-

priority process 

of resources 

needed by high-

priority 

processes 
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Priority-based Scheduling 

 For real-time scheduling, scheduler must support preemptive, priority-

based scheduling 

 But only guarantees soft real-time 

 For hard real-time must also provide ability to meet deadlines 

 Processes have new characteristics: periodic ones require CPU at 

constant intervals 

 Has processing time t, deadline d, period p 

 0 ≤ t ≤ d ≤ p 

 Rate of periodic task is 1/p 
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Virtualization and Scheduling 

 Virtualization software schedules multiple guests onto 

CPU(s) 

 Each guest doing its own scheduling 

 Not knowing it doesn’t own the CPUs 

 Can result in poor response time 

 Can effect time-of-day clocks in guests 

 Can undo good scheduling algorithm efforts of guests 


